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This paper studies the dynamics of Hamiltonian systems with many degrees of freedom by emphasizing the
many-basin structure. Three-dimensional systems in general have a many-basin structure corresponding to their
many stable configurations. This is in contrast to the single-basin structure of one- or two-dimensional systems
including the Fermi-Pasta-Ulam model, the Lennard-Jones model, and so on. The motion of the phase point
within given basins is examined depending on the type of configuration, ordered or random. The stochastic
transition in which the Kol’mogorov-Arnol’d-Moser torus collapses occurs at a certain kinetic energy for
ordered configurations, similar to the behavior of one- or two-dimensional systems, but not for random con-
figurations. This suggests that the chaotic sea prevails over the phase space with random configurations. The
motion of phase point among basins is described by a Bernoulli-like shift map and classified into three types
of motion, depending on the magnitude of kinetic energy: types 1, 2, and 3. Furthermore, such motion is
divided into two classes of motion, depending on whether or not asymmetric motion takes place. By asym-
metry we mean that the motion is unidirectional to lower basins in energy. The asymmetric motion is the
dynamical manifestation of ordered phases emerging from many other random ones and occurs for types 2 and
3 but not for type 1. The dynamical origin of asymmetric motion is investigated by introducing the notion of
intensity of motion in phase space, which is measured bys5tp/tq ~tp : the time scale of mixing dynamics
in the momentum space;tq : the time scale of diffusion dynamics in the coordinate space!. s is expressed
in terms of dynamical quantities. Our assertion that two classes of motion are separated by the decisive point
s51 is confirmed by performing computer simulations. The asymmetric motion is attributed to the transient
formation of the canonical probabilistic measure before completion of relaxation. The notion of intensity of
motion in phase space is expected to help in discovering a generation principle of ordered phases of condensed
matter from many random ones. The dynamical properties of type 3 are also examined and discussed in detail.
@S1063-651X~96!06311-8#

PACS number~s!: 05.45.1b, 05.70.Fh, 05.70.Ln, 61.20.Lc

I. INTRODUCTION

Materials conceal themselves in a wide variety of phases,
not all of which have been revealed, as has been witnessed
by the complexity of materials in the past decade@1,2#. Yet
for any given material, a common set of interactions at the
atomic or molecular level underlies all phases of the mate-
rial. More than three decades ago, Anderson@3# raised a
question: What is a solid? In other words, why is the ground
state of almost any assemblage of atoms regular, and why are
there no cases of glassy lowest energy states? More impor-
tant is the fact that this question is begging for a principle of
condensed phases generating from many possible configura-
tions of atoms. Since the last decade, interest has gradually
grown in the understanding of a variety of condensed phases
from a deterministically dynamical point of view. In particu-
lar, Aubry @4# made an intensive study of the Frenkel-
Kontorova model to find the crystalline ground state among

many possible configurations of atoms depending on the pa-
rameter values involved. Besides crystalline states, there ex-
ist in nature many condensed phases including glassy states,
supercooled liquids, clusters of atoms, and so on. In order to
offer a unifying principle for understanding condensed phase
properties of anN-atom system, Stillinger and Weber@5#
advocated the approach of shifting from ordinary three-
dimensional space to the 3N-dimensional configuration
space, where collective phenomena in condensed phases are
determined. In his investigation of the glass-forming process,
one of the authors@6# extended Stillinger and Weber’s idea
to find the phenomenon of the asymmetric motion of the
phase point in a Lennard-Jones system. At high kinetic en-
ergy, the phase point wanders erratically over various local
minima in the 3N-dimensional configuration space. As the
kinetic energy is decreased, it begins to wander erratically,
but as time passes it stays for a long time at a local mini-
mum. As time passes further, it moves to another local mini-
mum which is lower in energy than the former.

This raises a question: Why and how is the kinetic energy
frozen? In order to address this question, it is necessary to
study deterministically dynamical systems. Such a study has
a long history since Boltzmann invoked the ergodic hypoth-
esis in constructing statistical mechanics. However, to our
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knowledge few works have gone beyond the case where
there is only one phase such as gas, liquid, or crystal; accord-
ingly, such approaches are not sufficient to address the above
question.

In this paper we repeat and extend some of the results
given in the previous papers@6# and investigate the dynami-
cal behavior of Hamiltonian systems with many degrees of
freedom in which there are many local minima in the con-
figuration space. This work has two aspects: the theory of
deterministically dynamical systems and condensed matter
physics. It is the former on which this paper concentrates.
From the dynamical point of view, matter is the dynamical
state of a Hamiltonian system that is represented by a phase
point in a phase space with extremely high dimensions. From
the macroscopic point of view, each visible phase is a point
of the coordinate space, i.e., the configuration space embed-
ded in the phase space. We call the region surrounding a
local minimum a ‘‘basin.’’ The formation of the many-basin
structure produces a variety of dynamics such as the motion
among basins and that within a basin. The motion of phase
point among basins is the dynamical source of the many-
particle systems changing configurations and condensed mat-
ter phases. Thus, the study of motion among basins is a
central issue in various fields such as the physics of dynami-
cal systems, the physics of condensed matter~including
glasses!, and the physics of statistical mechanics. The num-
ber of basins depends on the spatial dimensions, the type of
interaction potential, and the number of particles. The system
we mainly deal with is a three-dimensional Lennard-Jones
system ofN particles that can cause a variety of condensed
phases. However, the results given in this paper may be ap-
plied not only to the Lennard-Jones system, but to any sys-
tem with a many-basin structure.

In order to describe the motion of the phase point, it is
convenient to separate it into the motion within a basin and
the motion among basins. The motion within a basin depends
on a property of basins, namely, the particles’ configuration;
the motion within an amorphous structure is much more sto-
chastic than that within a crystalline one. It has been shown
that a stochastic transition takes place between ergodic and
nonergodic states in the latter, while such a transition is ab-
sent in the former. The motion among basins is very compli-
cated. It was found in a previous paper that there are three
types of motion among basins depending on the magnitude
of kinetic energy. Asymmetric motion takes place as the ki-
netic energy is decreased. By asymmetry we mean that the
motion is unidirectional to lower basins in energy. Under-
standing this phenomenon is the main purpose of this paper.

To do this, we examine the behavior of orbits in the whole
phase space in two ways. One is to examine the diffusion of
a single orbit, and the other is to study the evolution of
distance between nearby orbits in an initial stage. Analyzing
the behavior of these quantities, we induce two time scales,
tp and tq . tp is the time when nearby orbits forget their
initial conditions, which is identical to the notion of the re-
laxation time for the momentum space of Krylov@7#, who
estimated the rate at which the orbits diverge for the hard-
sphere gas. tq is the sojourn time of the phase point in a
single basin. The ratios5tp/tp , which we call the intensity
of motion in phase space, is found to control the motion
among basins. Whens.1, asymmetric motion does not take

place, and the motion among basins is very erratic. Con-
versely, whens,1, asymmetric motion takes place, causing
the volume of the momentum space to increase. The asym-
metric motion is attributed to the transient formation of the
canonical probabilistic measure before completion of relax-
ation. The notion of the intensity of motion in phase space is
expected to help in discovering a generation principle of or-
dered phases of the condensed matter out of many random
ones.

The outline of this paper is as follows. Section II presents
the model and provides details on the molecular-dynamics
simulation technique. A periodic boundary condition is im-
posed to avoid the cluster formation of particles. Section III
presents results for both the motion within a basin and the
motion among basins. Section IV examines the behavior of
orbits in the phase space. The notion of the intensity of mo-
tion in phase space is introduced to clarify the motion among
basins. Section V examines the results of computer simula-
tions to evaluate our assertion that the decisive point of
whether or not asymmetric motion takes place is given by
s51. Section VI gives our conclusions and discusses direc-
tions for future work.

II. HAMILTONIAN SYSTEMS
AND THE MANY-BASIN STRUCTURE

A. Hamiltonian

The system we consider is given by the following Hamil-
tonian equations;

H@pja ,qja#5
1

2 (
ja

Nd S pja2m 1V@qja# D ,
V@qja#5 (

j ~Þk!
v~qjk!, ~1!

wherem is the mass of the particle andv(qjk) describes the
interaction in whichqjk is the distance between particlesj
and k. pja and qja are the canonical conjugate variables,
the a components of the momentum, and the coordinate of
the j th particle.N is the number of particles, andd is the
number of dimensions of the real space in which the system
is embedded.V[qja] is the potential surface, the number of
dimensions of which is equal toNd. The phase point de-
scribing the dynamical state of the system is described by the
set of $pja ,qja%, a point in the phase space or theG space.
The number of dimensions of theG space is 2Nd. Through-
out this paper we use the notationsj and k to number the
particle and the notationi to express the time, such that
t i5t01 iD in Sec. III B and t i5t01 iD t in the Appendix,
wheret0 is the initial time andD andDt are the time steps.

Let us define the interaction potential. Two conditions are
imposed on v(q): ~i! 2`,v(q) for any q and ~ii !
v(q),q2d for a largeq. Condition ~i! ensures stable con-
figurations of particles, while condition~ii ! ensures the ther-
modynamics limit, excluding the inhomogeneous distribu-
tion of the particles. Condition~i! excludes Hamiltonian
systems such as the celestial and the Coulombic ones from
our considerations, in which the particle configuration is sta-
bilized by the motion of the constituent particles. Throughout
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a large part of this paper, the interaction potential is taken to
be the Lennard-Jones~LJ! potential of the form

v~q!54e0F S lqD
12

2S lqD
6G . ~2!

The LJ potential has a conflicting nature of interactions, so it
produces a complex potential energy landscape that consists
of many valleys and hills in the configuration space of the
system whenN@1. The topography of the potential energy
V[qja] is projected onto the plane as illustrated in Fig. 1.
TheNd-dimensional coordinate space is divided into basins,
each of which contains one minimum ofV[qja]. The bold
dots stand for the local minima and the dotted lines for the
ridges. The region surrounded by the ridge lines is a basin.
All basins are connected, but not necessarily simply con-
nected. The configuration of the particles within a basin is
not in a stable phase in terms of thermodynamics because the
potential barrier between the basins may not be extensive or
the size of certain basins may be too negligible to contribute
to the thermodynamical quantities.

The numberM [N] of the basins with different configura-
tions increases very rapidly for larger systems@8,9#; it is at
most proportional toemN, wherem is a constant depending
on the system. This exponential form has the additive prop-
erty of M [N11N2]5M [N1]M [N2], implying that the
many-basin structure of the system consisting of (N11N2)
particles is produced by combining the many-basin structures
of two subsystems withN1 and withN2. For the truncated LJ
potential, the number of the basins was counted@10# and

found to beM @32#5157, yieldingm.0.16. From this value,
M @108#.3.23107 has been obtained forN5108. There is a
variety of configurations, i.e., random and ordered ones. A
many-particle system forms the face-centered-cubic~fcc! or-
dered configuration at the ground state and random configu-
rations at higher potential energy states. The number of ran-
dom configurations is overwhelmingly larger than that of the
ordered configurations. When considering the motion of
phase point in theG space, it is natural to separate its motion
into that within a basin and that among basins. In what fol-
lows, we shall investigate the transient dynamical properties
of the Hamiltonian system withN@1, focusing on the many-
basin structure. By transient, we mean that the observation
time of the dynamical behaviors is shorter than or equal to
the relaxation time.~These time scales will be discussed in
Sec. III.! Then, it is helpful to ask whether or not the quan-
tities of interest have the additive property and whether or
not the quantities normalized byN vanish in the limitN→`.

Investigations of dynamical properties are performed us-
ing the standard molecular-dynamics technique, i.e., Verlet’s
@11# and Runge-Kutta’s algorithms. The periodic boundary
condition is imposed on the system;V[qja]5V[qja1naL]
in Eq. ~1!, wherena is any integer.L is determined by using
the thermodynamic relation, the virial theorem relating it
with system pressureP,

PLd5
1

d (
ja

Nd

pja
]H

]pja
2
1

d (
ja~ j,k!

Nd

qjaka

]H

]qjaka
, ~3!

whereqjaka5qja2qka . This is used to determineL at the
initial stage by putting the system pressureP equal to zero:
P50. The term on the right-hand side of this equation is
evaluated for the single trajectory starting from the initial
condition in theG space, keeping the total energy constant. It
is noteworthy that the ergodicity property is not assumed in
Eq. ~3!. The virial theorem usually holds when we average
the terms on the right-hand side of Eq.~3! over a long time
along the single trajectory under the ergodic assumption that
the time average is equal to the average of the ensemble of
trajectories uniformly scattered over the whole region of the
available G space. P does not generally keep its initial
value as time elapses for the fixedL.

All the quantities for the LJ interaction are expressed in
scaled form in which mass, distance, energy, and time are
measured by using units ofm, l , e0, and 0.01A$ l 2e0 /m%
~5Dt!, respectively. Dt is the time step used in the molecu-
lar dynamics. The quantityT, defined by

T5
2

d
eK ~4!

whereeK is the kinetic energy per particle, is used to char-
acterize the kinetic energy of the system, which corresponds
to the temperature in the thermodynamics.

The number of particles used in the investigation of mo-
lecular dynamics isN54n3 ~n is a positive integer!, so the
particles can have the fcc configuration. The value ofN used
is 32, 108, 256, 500, or 864. All calculations in this paper are
performed by assumingd53.

In the remaining part of this section, we study the motion
of phase point within a basin.

FIG. 1. The simplified topography of the potential surface
V[qja] projected onto the two-dimensional space. The bold dots
stand for the local minima, and the broken lines for the ridge lines.
The region surrounded by the ridge lines is a basin. The trajectory is
indicated by a bold line. As described in Sec. III B, the trajectory is
generated by the Bernoulli-like shift mapVi115fVi . Vi is the
potential energy at the local minimum of the basin, satisfying the
relationVi5V[qja]/3dN ~V[qja] is the total potential energy!. The
trajectory illustrated in this figure is presented by
$...,V1 ,V2 ,V3 ,V3 ,V4 ,V5 ,V5 ,V5 ,...%.

54 4687HAMILTONIAN SYSTEMS WITH MANY DEGREES OF . . .



B. Motion within a basin

In previous works, the dynamical properties have been
discussed@12–17# for one- or two-dimensional systems hav-
ing a single basin. The occurrence of the stochastic transition
in which the Kol’mogorov-Arnol’d-Moser~KAM ! torus col-
lapses has been the main issue, which is related to the er-
godic property of the system showing the equipartition law
where the kinetic energy is equally distributed over the de-
gree of freedom. The Arnol’d diffusion@18,16#, the equipar-
tition @19–21#, and the Boltzmann-Jeans freezing of the high
frequency mode@22–24# have been examined as dynamical
characteristics of many-particle systems.

For a system having the many-basin structure, we inves-
tigate the dynamical properties of the motion within a basin.
For the cases where the potential barrier separating one basin
from other basins is high, the motion of phase point is con-
fined in the initial basin. For the other cases, the phase point
escapes from the basin and wanders among the basins. It is a
formidable task to estimate the potential barrier height for all
basins. When the kinetic energy is sufficiently small, the
phase point stays in the initial basin for a long time before
going to other basins. ForT<0.05, the phase point stays in
the basin for a time oft,500.

We study the dynamical instability of the trajectories of
the phase point. The time evolution of the separation be-
tween the nearby trajectories is examined. A method evalu-
ating the evolution rate of two trajectories cannot be applied
because the dynamical quantitiesqja are confined within a
very small region near the local minima~Fig. 1!. Instead, we
set up the equation of motion for small quantities
dpja(t)[5pja(t)2p ja

0 (t)] and dqja(t)[5qja(t)2q ja
0 (t)]

~j51,...,N; a51,...,d! along the trajectory$p ja
0 (t),q ja

0 (t)%.
This method makes it possible to obtain the Lyapunov expo-
nents, which are evaluated for the time before the phase
point goes to other basins. Consequently, the definition of the
Lyapunov exponent here is different from the usual defini-
tion, in which they are quantities averaged over long times
under the ergodic assumption.~Details of the calculations are
given in the Appendix.!

The growth rate is averaged over many initial conditions
set in the initial basin for the system. The largest Lyapunov
exponents calculated forN532 and 108 are calculated: the
result forN5108 is almost identical to those forN532. In
Fig. 2, the largest Lyapunov exponents forN5108 are
shown as a function ofT for the two types of the configura-
tions of particles, ordered and random. They read

l r~T!.6.3~T2T0
r !, T0

r .0.0; T0
r <T<0.05

for random configurations, ~5!

lc~T!.1.2~T2T0
c!, T0

c.0.023; T0
c<T<0.05

for fcc ordered configuration.

From this, we observe the following features:~1! The sto-
chastic transition point~T 0

r or T 0
c! at which the Lyapunov

exponents vanish depends on the particle configuration: it is
finite for the fcc configuration, while it vanishes for the ran-
dom configurations. For the fcc-ordered configuration,T 0

c is
found to be insensitive to the numberN of particles; thus, it

is likely to remain finite even for the caseN→`. For ex-
ample for the LJ systems consisting of Ar particles,T 0

c

amounts to.4.3 K. This value agrees well with the 5 K
transition energy for the two-dimensional LJ system of Ar
particles withN564 @25,26#. For the small kinetic energy of
T<T 0

c, the phase point is trapped on the KAM torus. This
means that theG space is divided into many mutually dis-
jointed invariant measures. Most basins have random con-
figurations. The stochastic transition pointT 0

r is insensitive
to the degree of randomness of configuration as well as to the
system sizeN ~@1!. It is important that the stochastic tran-
sition pointT 0

r vanishes. This suggests that the volume of the
G space occupied by the KAM torus is so small that the
phase point wanders in the chaotic sea connecting most re-
gions in theG space, provided that the kinetic energy is
greater than the potential barrier between basins.~2! The
trajectory instabilities are stronger for the random configura-
tions than for the ordered configurations.

The spectra of Lyapunov exponents is shown in Fig. 3 for
the system ofN5108, assumingT50.05. The Lyapunov ex-
ponents, whose number is 2dN ~5648!, are arranged in de-
scending order.~The method of calculations is also given in
the Appendix.! The following properties are concluded for
the Hamiltonian systems. The sum of them exactly vanishes,
as concluded from the Liouville theorem that the phase space
volume is kept constant. A pair oflm and l2dN2m11 such
thatlm52l2dN2m11 (1<m<dN) always appears, as con-
cluded from the time reversibility of the equation of motion.
Among many Lyapunov exponents, 2d ~56! pieces exactly
vanish, as concluded from the translational symmetry along
x, y, andz directions.

The calculated spectra show that six pieces of Lyapunov
exponents do not vanish due to the bad convergence, espe-
cially for the smalllm . It is found that the gap nearlm50
becomes narrower as the run time is extended; the existence
of the gap is attributed to the method in which the transla-

FIG. 2. The largest Lyapunov exponent as a function ofT for
the LJ system ofN5108 andd53 for two types of configurations;
fcc ordered and random.T characterizes the kinetic energy, which
is defined in Eq.~4!. The unit of the horizontal axis is the energy
unit e0 @appearing in Eq.~2!#, and that of the vertical axis is 1/Dt ,
whereDt is the time unit: D t50.01A$ l 2e0 /m%.
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tional symmetry of the Hamiltonian is not taken into ac-
count. The shape of the spectra does not change drastically
as the run time is extended. The magnitude of the largest
Lyapunov exponents agrees well with that shown in Fig. 2.
These observations imply that the overall shape of the spec-
tra and the magnitude of the largest Lyapunov exponents are
reliably consistent. The spectra are downwardly convex for
the positive regionlm.0. This implies that in theG space
the directions along the trajectory are divided into two dis-
tinct directions, those with strong instability and those with
weak instability. The shape of the Lyapunov spectra is also
insensitive to the degree of randomness of configuration.

III. LANDSCAPE DYNAMICS

A. Two time scales and observation time

We study the inherent dynamics of the many-basin struc-
ture, the motion of phase point among basins. First of all, we
note that there are two types of time scales for the many-
particle systems, i.e., recurrence time and relaxation time.
One is the Poincare´ recurrence time@27#. For the system
with a fixedNd and finite volume ofG space, the phase point
returns to near the initial point after a certain time. The ex-
pression for the recurrence timetrecur averaged over the re-
peated recurrence of the single trajectory was formulated by
Smolukhovsky@28#. For systems of mixing type, the recur-
rence time becomes proportional to the volume of the phase
space,trecur.euN, whereu depends on the resolution of the
measurement for our observation. For the macroscopic sys-
tem with largeN, the recurrence time becomes very large.
Boltzmann@29# used this to explain why there is no occur-
rence of reversibility of the dynamics under our observation
time. The other time scale is the relaxation time after which
the ensemble of trajectories tends to be approximately uni-
formly distributed over the availableG space. It was explic-
itly estimated by Krylov@7# for the simple model of the
perfect gas to betrelax.mL2/4h, whereh is the Planck con-
stant andL the linear size of the system. This model has a

flat potential surface; each particle changes its direction of
velocity with time but keeps its magnitude constant. The
relaxation time is related to the ensemble of trajectories,
whereas the recurrence time is concerned with a single tra-
jectory. For systems with many-basin structures, the magni-
tude of velocity as well as its direction changes for each
particle. It is a formidable task to estimate the relaxation time
for such systems because of the lack of a general method to
confirm the completion of the relaxation process. The relax-
ation time may be extremely long, as is seen for the glassy
phases. In the following subsection, we shall observe the
motion of phase point among basins for the observation time,
satisfying the relation 0,tob<trelax ~!trecur!.

B. Shift-map description

The trajectory is described by a set of$pja(t),qja(t)% for
a continuous timet. Change in the configuration is produced
by the motion among basins in the potential energy surface.
For this, it is convenient to characterize the motion by using
the basin to which the phase point belongs. The method of
mapping the trajectory onto the basin was invented by Still-
inger and Weber@10,5#. The configuration at the local mini-
mum of the basin is called the inherent structure. Their
method is used here to obtain the Bernoulli-like shift-map
description for the motion among basins, thus allowing clas-
sification of the motion among basins. Let us consider the
series of phase points measured at every predetermined time:
$pja(t01 iD),qja(t01 iD)% ~i51,2,...!. ~Note that the nota-
tion i is used to express the time, but not the particle num-
ber!. The series given by a set of$qja(t01 iD)% is numbered
depending on which basin the phase point belongs to; the
basin for the phase point starting at timet5t0 is represented
by the number 1. The basin at next timet01D is represented
by 2 ~or 1! if it is different from ~or the same as! basin 1. The
basin at timet012D is represented by 3 if it is different from
the previous basins 1 and 2, and represented by 1~or 2! if it
is the same as basin 1~or 2!. By repeating this procedure, the
trajectory is described by a series of numbers~the value ofD
is appropriately chosen so as to characterize the motion,
which is fixed during simulations!:

ni115Fni . ~6!

The shift-map description is based on the facts that the po-
tential surface has many basins whose numbers are larger
than 1 and that it is divided into the basins without overlap.

By expressing Eq.~6! in terms of the series of potential
energy~denoted byVi! at the local minimum of the basin
instead ofni , we have another Bernoulli-like shift map,

Vi115fVi . ~7!

This description clarifies the correspondence between the tra-
jectory and the potential surface. The shift-map description is
illustrated in Fig. 1. The trajectory is generated by the shift
mapVi115fVi . In this figure, the trajectory is indicated by
a bold line. The trajectory is expressed by a series of
$...,V1 ,V2 ,V3 ,V3 ,V4 ,V5 ,V5 ,V5 ,...%. The symbols~* ! on
the trajectory correspond tot i5t01 iD. The second method
will be used hereafter.

FIG. 3. The Lyapunov spectra for the LJ system withN5108
and d53 with T50.05. The Lyapunov exponents numbered by a
positive integer less than or equal to 2dN ~5648! are arranged in
larger order. The unit of the vertical axis is 1/Dt , whereDt is the
time unit: D t50.01A$ l 2e0 /m%.
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C. Three types of motion among basins

Let us examine the motion of the phase point which is
initially in a certain random configuration. The motion of
phase point starting from ordered configurations is a process
of going from the initial ordered configuration to the final
state observed for random configurations. The final states are
the same, regardless of the type of initial configuration,
whether ordered or random. The motion among basins is
classified@30,6# into three types, depending upon the quan-
tity T in descending order of kinetic energy@Figs. 4~a!–
4~c!#. All types of motion are chaotic, as seen from the fact
that the largest Lyapunov exponents are positive.

1. Type 1 (wandering)

For higher kinetic energy, the phase point wanders from
basin to basin and has no tendency to cease wandering. The
numbers(t) of the basins on which the phase point passes
during time intervalt is scaled@10# by

s~ t !5Nc~T!t. ~8!

Thec(T) measures the number of basins over which a single
particle crosses during the unit timeDt . Note thatc(T) is
intensive whiles(t) is extensive. For the system ofN5108,
c(T) is numerically calculated as

c~T!.
AT
5.82

e22.16/T. ~9!

The wandering property is clearly seen by examining the
property averaged over a long time interval, as shown in
Figs. 5~a!–5~c!. In these,Vi11 is plotted as a function of the
precedingVi ’s. TheVi11’s are distributed randomly around
the line Vi115Vi , implying that the phase point wanders
without converging toward a definite value. The points ap-
pearing on the diagonals mean that the phase point stays in
the same basin at timest i and t i11.

2. Type 2 (asymmetric motion and wandering)

For intermediate kinetic energy, the behavior of the phase
point for the time intervalt,t2 is similar to that of type 1.
The s(t) andc(T) are precisely the same as those given in
Eqs.~8! and~9!. The dynamics proceed toward lowerVi ; the
kinetic energyT increases with time. This motion, hereafter,
is calledasymmetricmotion. The asymmetric motion occurs
for both types 2 and 3, and is also a process of generating
heat. The configuration of the particles becomes ordered as
the asymmetric motion proceeds. The wandering ceases after
a long time elapses for the finiteN, as seen in Fig. 5~b!. This
ceasing timet2 depends on both the system sizeN and
T: t2(N,T). The simulations show thatt2(N,T) increases
gradually with N and becomes rapidly shorter asT de-
creases. The magnitude of the largest Lyapunov exponent,
measured for the finite time interval, becomes smaller as the
asymmetric motion proceeds; this magnitude in the final
state is roughly two-thirds of that in the initial state.

The asymmetric motion is irreversible@31# since it is cha-
otic. However, the irreversible motion is not always asym-
metric since irreversible behavior occurs even for the motion
of type 1.

3. Type 3 (intermittency and asymmetric motion)

For lower kinetic energy, the wandering property is
strongly suppressed. The phase point assumes the different
Vi ’s intermittently @Fig. 4~c!#. As T decreases, the time in-
terval t3 for which the phase point stays in a singleVi be-
comes rapidly longer; itsT dependence remains unknown
because of the strong dependence of the trajectory~initial
condition!. This type of motion is also asymmetric motion.
The dynamical behavior of this type depends strongly on the
initial conditions, which were discussed in the last section.
The magnitude of the largest Lyapunov exponent, which is
measured for the finite time interval, behaves similar to that
for type 2.

In the next section we discuss the dynamical origin of the
asymmetric motion of the phase point.

IV. ASYMMETRIC MOTION

A. Two time scales

Why does asymmetric motion occur for types 2 and 3 but
not for type 1? As mentioned previously, our observation

FIG. 4. Three types of motion among basins, depending upon
the quantityT in descending order. All types of motion are chaotic.
The trajectory$pja(t),qja(t)% is described by series ofVi , as de-
scribed in Eq.~7!. Vi is the potential energy at the local minimum
of the basin, defined by the relationVi5V[qja]/3dN ~V[qja] is the
total potential energy!. The unit of the horizontal axis is the time
unit Dt (50.01A$ l 2e0 /m%), and that of the vertical axis is the en-
ergy unite0 @in Eq. ~2!#.
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time is much less than the recurrence time:tob!trecur. For
the opposite casetrecur!tob, no asymmetric motion occurs
for any Hamiltonian systems due to the the Poincare´ recur-
rence phenomenon.

In order to address this question, let us consider two ex-
treme cases: one is the case where the phase point stays in

one basin for a long time before the subsequent transition to
other basins; the other is the opposite case where it passes
over each basin within a very short time interval.

For the former case, the particles frequently change their
momenta in the basin so that each particle takes various val-
ues of momentum. Consequently, the sojourn time~or prob-
ability! in which the phase point stays in the domain
P jadqja of the basin is given@31# by the number of mi-
crostates, i.e., the volume fractionV in the G space. V is
calculated as

V5
P jadqja
hNdN! E Pdpjad~e2H@pja ,qja#!,

5Vp~e2V@qja#!P jadqja , ~10!

where

Vp~e2V@qja#!5C~N,d!~e2V@qja#!Nd/221. ~11!

e is the total energy of the system, andd~...! in Eq. ~10! is the
Dirac function. The mixing property is assumed to obtain Eq.
~10!; the particles frequently exchange their kinetic energies.
The prefactorC(N,d) on the right-hand side of Eq.~11!
depends upond andN but not upone andqja . Integrating
Eq. ~10! with respect to the coordinateqja under the condi-
tion 0<e2V[qja] obtains the total volume of the availableG
space, from which we get the Boltzmann entropy defined in
statistical physics. In comparing the phase space volume at
the potential energyV[qja] with that atV[qja]1DV, DV is
assumed to be smaller thane2V[qja] at aboutDV.0~1!.
The volume ratiog is given from Eq.~11! by

g5
Vp~e2V@qja#2DV!

Vp~e2V@qja#!
,

.S 12
D

e2V@qja# D
~Nd/2!21

. ~12!

By using the relatione2V[qja]5NdT/2 @see Eq.~4! for the
definition of T# and assuming 1!Nd, we have the well
known canonical measure for the coordinate space,

g5expS 2
DV

T D . ~13!

The phase space volume in theG space becomes larger as the
potential energyV[qja] decreases. In other words, the prob-
ability of the phase point moving in the direction of lower
potential energy is larger than that in the opposite direction.
Thus, we might expect the occurrence of asymmetric motion
in this case~Fig. 6!. The crucial point of this argument is that
the canonical probabilistic measure is formed transiently un-
less the phase point moves over the whole region of theG
space. Achievement to the true equilibrium state is not nec-
essary. Ergodic assumption is expected to hold for the
trelax<tob.

On the other hand, for the latter case the phase point
passes through a given basin without significantly changing
the momenta of the particles. Therefore, the sojourn time
where the phase point stays in the domainP jadqja of the
basin is no longer given by Eq.~10!. There are two cases
where the sojourn time is given by Eq.~10!: the first is the
case we deal with, as discussed above; the other is the case
where relaxation to the equilibrium state is accomplished. In

FIG. 5. ~a! A plot of Vi11 as a function of the precedingVi ,
which is obtained from Fig. 4~a! Vi is the potential energy at the
local minimum of the basin, satisfying the relationVi5V[qja]/3dN
~V[qja] is the total potential energy!. The unit of the horizontal axis
is the same as that of the vertical axis but arbitrary.Vi11’s are
distributed randomly around the lineVi115Vi , showing that the
phase point wanders without converging toward the definite values.
~b! A plot of Vi11 as a function of the precedingVi , similar to ~a!,
which is obtained from Fig. 4~b!. The number of dots below the line
Vi115Vi is larger than that above the line, showing the occurrence
of the asymmetric motion. There are also some dots above the line
Vi115Vi , showing the wandering property.~c! A plot of Vi11 as a
function of the precedingVi , similar to~a!, which is obtained from
Fig. 4~c!. The number of dots below the lineVi115Vi is over-
whelmingly larger than that above the line, showing that the tran-
sition is dominant for the caseVi11,Vi .
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the latter case, relaxation time must be much shorter than the
observation time. However, this contradicts our assumption
made in Sec. III A.

The arguments above suggest that there are two distinct
time scales, depending on whether or not the probabilistic
measure is formed transiently. One is the time scaletp , dur-
ing which mixing is accomplished in the momentum space.
The other istq , during which the phase point passes though
a given basin. Before evaluating the two time scales, we
examine the behavior of the dynamical variablespja andqja
in the next subsection.

B. Absolute and relative diffusions: Existence of the crossover
time tc

The absolute and relative diffusions,ap,q(t) and r p,q(t),
are, respectively, defined by

ap,q~ t !
25ap~ t !

21aq~ t !
2,

~14!
r p,q;p8,q8~ t !

25r p,p8~ t !
21r q,q8~ t !

2,

where

ap~ t !
25

1

Nd K (
ja

Upja~ t !2pja~0!U2L ,
~15!

aq~ t !
25

1

Nd K (
ja

Uqja~ t !2qja~0!U2L ,
r p,p8~ t !

25
1

Nd K (
ja

Upja~ t !2pja8 ~ t !U2L ,
~16!

r q,q8~ t !
25

1

Nd K (
ja

Uqja~ t !2qja8 ~ t !U2L .

Two trajectories described by the set$pja(t),qja(t)% and the
set$pja8 (t),qja8 (t)% are close to each other at the initial time
t50. The ^•••& stands for the average over the ensemble of
the trajectories starting from the small regionv in the G
space. Consequently, these quantities also depend on the ini-
tial conditions. The suffixesp, q, p8, andq8 of the diffusion
lengths defined by Eqs.~15! and~16! are ambiguous because
they are averaged over the ensemble of trajectories
$pja(t),qja(t)%, and so have no dependence on each trajec-
tory. However, the addition of these suffixes help to get the
following triangle inequalities. First we consider a diffusion
length analogous to those in Eqs.~15! and ~16! for two tra-
jectories @the quantities without brackets in Eqs.~15! and
~16!#, which results in the triangle inequalities analogous to
those in Eqs.~17! and ~18! for those trajectories. Next, we
average the resultant inequalities over the ensemble of the
trajectories starting from regionv to get the following in-
equalities:

r q,q8~ t !
2<aq~ t !

21aq8~ t !
21r q,q8~0!2, ~17!

r p,p8~ t !
2<ap~ t !

21ap8~ t !
21r p,p8~0!2. ~18!

Together with these, we also have

r p,q;p8,q8~ t !
2<ap,q~ t !

21ap8,q8~ t !
21r p,q;p8,q8~0!2.

~19!

The numerical calculations performed for the systems of
N532, 108, 256, and 864 show that the absolute and relative
diffusions have the following properties:

(p1) For larget,

aq~ t !
25 1

2Dq~T!t, ~20!

whereDq(T) is the diffusion length.
(p2) All of the relative diffusion lengths increase expo-

nentially with time for shortt @32# as

r p,q;p8,q8~ t !
2.r p,q;p8,q8~0!2e2lr t,

~21!
r p,p8~ t !

2.r p,p8~0!2e2lr t, r q,q8~ t !
2.r q,q8~0!2e2lr t,

wherelr is the largest Lyapunov exponent.
(p3) r p,p8(t)

2 saturates at a certain time.
(p1) is the property seen for normal liquids. (p2) is what
is expected because all motions are chaotic, as seen in Sec.
III C. ( p3) is concluded from the following inequality:

r p,p8~ t !
2<K 1

Nd (
ja

$pja~ t !21pja8 ~ t !2%L 1r p,p8~0!2,

~22!

< K 2d ~eK1eK8 !L 1r p,p8~0!2.2T1r p,p8~0!2.

~23!

The upper boundedness ofr p,p8(t)
2 comes from the fact that

the Hamiltonian has the monotonically increasing~quadratic!
function of the variablespja and from the fact that the ki-
netic energy is positive while the potential energy is lower
bounded:2`,V[qja]/N. It follows from (p2) and (p3)

FIG. 6. Occurrence of the asymmetric motion. The horizontal
axis describes the configuration space, while the vertical axis shows
the potential energy. The following inequality
holds: Vp(e2V[q ja

3 ]),Vp(e2V[q ja
1 ]) whenV[q ja

1 ].V[q ja
3 ].

Here,Vp(e2V[qja]) is the volume ofG space when the volume of
the coordinate space is equal to unity.e is the total energy of the
Hamiltonian. The probability of the phase point occupying a unit
volume of the coordinate space may be proportional to
Vp(e2V[qja]). The probability of the phase point moving in the
direction of lowering the potential energy is larger than that in the
opposite direction. Thus, we expect that the motion is unidirectional
to lower basins in energy, i.e., the occurrence of the asymmetric
motion.

4692 54SHINJO KAZUMASA AND SASADA TOMOHEI



that there exists a crossover timetc of r p,p8(t)
2 between

short and long times such that

r p,p8~ t !
2.r p,p8~0!2e2lr t for 0<t,tc , ~24!

r p,p8~ t !
2.2T1r p,p8~0!2 for tc,t. ~25!

From these, we easily obtain the timetc at which r p,p8(t)
2

reaches its upper-bounded value:

tc.
1

2l r~T! F lnS 2T

r p,p8~0!2D G . ~26!

@See Eq.~16! for the definition ofr p,p8~0!2#. Here, we explic-
itly express theT dependence of the largest Lyapunov expo-
nent, l r5l r(T). This expression means that thetp is the
time scale in which the initial indeterminacy of the variables
pja increases to coincide with the basin size on the momen-
tum space. In obtaining the equality in Eq.~26!, we ignored
the small termr p,p8~0!2 on the right-hand side of Eq.~25!,
instead using for comparison the remaining term 2T @see
Sec. V for the evaluation ofr p,p8~0!2#.

A question arises: What does the existence oftc mean? In
order to address this question, we consider two trajectories
whose momenta are, respectively, given by the sets$pja(t)%
and$pja8 (t)%. Suppose$pja(t)% are very close to$pja8 (t)% at
time t50. For shortt, the difference between the two sets is
small, and so the two sets closely match. As time goes on,
however, the difference between them increases, and results
in vanishing the correlation attc . Then, two sets behave
independently. In other words, trajectories become Markov-
ian in the momentum space@33#. Thus,tc is the signature of
trajectories becoming Markovian in the momentum space be-
yond tc . The tc is also the crossover time such that

r q,q8~ t !
2.r q,q8~0!2e2lr t for 0<t,tc , ~27!

r q,q8~ t !
2.r q,q8~0!2e2lrtc1Dq~T!~ t2tc! for tc,t.

~28!

The monotonic increase ofr q,q8(t)
2 for large t ~@tc! is sig-

nificant sincer p,p8(t)
2 saturates at a certain time. It is inter-

esting to note from numerical calculations that when the
Markovian process occurs in the momentum space, the dif-
fusion lengths in the coordinate space sets obey the normal
diffusion law.

It is noteworthy that the expression for the crossover time
tc given here is equivalent to the relaxation time with respect
to momenta in theG space estimated by Krylov@7#. He es-
timated the relaxation time of the system explicitly for the
case of a perfect gas, based on the instability of the trajecto-
ries. By applying the arguments analogous to those made
here concerning the total momentum, he obtained the relax-
ation time with respect to momenta except for the negligible
factor,

tKrylov5
3/2

ln~l r /r 0!
F lnS 2p

Dp0 /p0
D G , ~29!

where ln(l r /r 0) describes the deviation rate of the total mo-
mentum from the initial value,p0 is the momentum, andDp0

the initial indeterminacy. In the notations used here,
ln(l r /r 0) is the largest Lyapunov exponent,p0 is AT/2, and
Dp0 is r p,p8~0!.

C. Intensity of motion

We are now in a position to explore the dynamical origin
of the asymmetric motion. To this end, we introduce a new
notion, the intensity of motion@34# in phase space, to de-
scribe the dynamical competition between the motion of the
phase point in the momentum space and that in the coordi-
nate space. The degree of intensity of motion is measured by

s~T!5
tp~T!

tq~T!
, ~30!

where thetp(T) and tq(T), which were introduced in Sec.
IV A, denote, respectively, the time scale characterizing the
mixing of the phase point in the momentum space, and the
time scale of the diffusion of the phase point in the coordi-
nate space. Here we explicitly represented theT dependence
of the quantities appearing for the expression. Thes(T)
must be intensive. The intensity of motion has the following
meaning. Fors(T),1, relaxation occurs faster in the mo-
mentum space than in the coordinate space. The phase point
takes the various states inside the momentum space, forming
transiently the canonical measure given in Eq.~13!. In other
words, the kinetic energy plays a role asheat. On the other
hand, fors(T).1, the phase point transmits between the
basins of the potential surface before relaxation with respect
to the momentum space.

Our assertion is as follows: asymmetric motion takes
place in the cases(T),1, and wandering motion takes place
in the cases(T).1. The transition point determining
whether or not asymmetric motion takes place is given by
the boundarys~T* !51.

Let us express thes(T) in terms of the dynamical quan-
tities obtained in previous sections. We begin withtp . It is
evident from arguments given in Sec. IV B thattp can be
regarded astc . Next we considertq . The mean size of a
basin is denoted byl q or Lq : the capital letterLq describes
the size of the basins in theG space, and the lower case letter
l q describes the size of the basins normalized for one degree
of freedom of the systems;Lq and l q satisfy the relation
L q
25Ndl q

2. tq is the time scale where the ensemble of the
phase points pass over the basin. From this, we have
L q
25NdDq(T)tq , or

tq5S Lq2NdD 1

Dq~T!
,

5
l q
2

Dq~T!
. ~31!

From this expression, it is seen thattq is the time scale where
one particle jumps between two neighboring basins, the dis-
tance of which is given byl q . By inserting Eqs.~31! and
~26! into ~30!, we have
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s~T!5
tp
tq
,

5S 1l q2D Dq~T!

2l r~T! F lnS 2T

r p,p8
2

~0! D G . ~32!

The s(T) given here becomes intensive, as required. It is,
however, difficult to evaluate the size of the basinl q in this
expression within the limits of our computer power. Let us
rewrite this expression, based on the phenomenological ar-
guments as follows.

As seen above,tq describes the time interval in which the
particle jumps between two neighboring basins, the distance
of which is given byl q . Recall that the number of basins
over which the phase point passes during the time intervalt
is given by Eq.~8!. The system consists of theN particles.
During the time intervaltq , some particles stay in the basin
and the others jump to the next basin. Therefore, we may
obtain the equations(tq).N in ~8!, indicating that during
the time intervaltq theN particles may jump between two
neighboring basins. This seems to be supported by the fact
that the diffusion constantDq(T) is given by the Arrhenius
law, as will be given later@Eqs. ~36! and ~39!#. We have
s(tq)5Nc(T)tq.N, from which

tq.
1

c~T!
. ~33!

By combining Eqs.~33! and ~26!, we have

s~T!.
c~T!

2l r~T! F lnS 2T

r p,p8~0!2D G . ~34!

Thes(T) obtained here is also the intensive. Furthermore, as
will be seen later, the calculatedT dependences ofDq(T)
and c(T) are identical within the error of the simulations,
indicating that thes(T) in Eq. ~34! is the sameT depen-
dence as that in Eq.~26!. This suggests the validity of our
phenomenological arguments made above. The quantities
Dq(T) and c(T) in Eq. ~34! can be calculated with the re-
sults of computer simulations. Thus, we can compare the
transition point ofs~T* !51 with the simulation results.

In the next section we evaluate our assertion by carrying
out numerical calculations. Before proceeding, it should be
noted that the size of a basin in the coordinate space,Lq , can
be known. By comparing Eq.~34! with Eq. ~32!, we have the
size of the basin,

l q
2.

Dq~T!

c~T!
or Lq

2.NdFDq~T!

c~T! G . ~35!

This expression for the basin size is based on the phenom-
enological arguments.

V. RESULTS OF COMPUTER SIMULATIONS

A. Lennard-Jones systems: Case ofN5108

The quantitiesc(T) and l r(T) in the expression in Eq.
~34! are not averaged over a long time, as seen from our
arguments. The dynamical behavior near the transition point
determines the transition pointT* of s~T* !51, so that the

asymmetric motion appears long after the phase point wan-
ders among the various basins just below the transition point.
Therefore, we can use the quantitiesc(T) andl r(T) aver-
aged over a long time to evaluate the transition pointT* ; we
again denote such quantities by the same notationsc(T) and
l r(T).

Let us compare the expression in Eq.~34! with the results
of computer simulations for the Lennard-Jones system of
N5108. The interaction potential is given in Eq.~4!. The
calculatedl r(T) andDq(T) are shown in Figs. 7 and 8, as a
function of T. The calculatedl r(T), the largest Lyapunov
exponent, is aboutl r(T);5.8T for 0,T,0.75, while for
0.4<T, the diffusion constantDq(T) is described by the
Arrhenius law,

Dq~T!.0.12ATe22.13/T. ~36!

The calculatedc(T) has been already given in Eq.~9!:

c(T)5ATe22.16/T/5.82. By inserting the calculatedDq(T)
andc(T) into Eq. ~35!, the sizel q

2 of the basin is estimated
to be 0.698e0.03/T: the weakT dependence of the estimated
size is regarded as negligible within the error of the computer
simulations. From this, we have the reasonable basin size
l q.0.8354, which is close to the distance~.0.77! between
the nearest neighboring particles for the fcc structure.

Let us evaluate the transition pointT* satisfying the equa-
tion s~T* !51. The value ofr p,p8~0! is necessary to evaluate
s(T) in Eq. ~34!. However, it is not determined within the

FIG. 7. The largest Lyapunov exponent as a function ofT, cal-
culated for the LJ system ofN5108 andd53 for the random con-
figurations of the basins. The unit of the horizontal axis is the en-
ergy unite0 @appearing in Eq.~2!#, while that of the vertical axis is
1/Dt , whereDt is the time unit; D t50.01A$ l 2e0 /m%. The magni-
tude of the largest Lyapunov exponents is insensitive to the system
sizeN; the result forN5108 is identical to thatN5256 or 500.
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framework of classical mechanics. Here, we make the semi-
classical ansatz given byr p,p8(0)5h/L, whereL is the sys-
tem size andh is the Planck constant. The choice of system
size L reflects less on the value ofT* . For example, for
system sizeL51 cm, ln„r p,p8~0!….218.885 064 937 546 1
in our units. Thetp and tq given in Eqs.~26! and ~33! are
shown in Fig. 9 as a function ofT. The tp’s are calculated

for ten initial conditions. tq depends onT more rapidly
than doestp . This rapid dependence determines the position
at which the curve oftp crosses that oftq . From this figure,
we have the transition pointT*.0.48.

In order to confirm the validity of our theoretical conclu-
sion, we performed computer simulations for five initial con-
ditions by changingT to examine whether the asymmetric
motion appears or not. The simulation results determined for
the five initial conditions areT*.0.55,T*.0.55,T*.0.50,
T*.0.50, andT*.0.50. These agree well with our theoreti-
cal resultT*.0.48.

B. Truncated Lennard-Jones system: Case ofN532

Let us test our assertion for another system, a Lennard-
Jones type where the interaction potential is given by

v~q!5A~q21221!e1/~q2q0! ~0,q,q0!,

50 ~q0<q!, ~37!

whereA58.805 977 andq051.652 194. The units of time,
energy, length, and mass are assumed to be the same as those
for Ar atoms. This system has been examined by Stillinger
and Weber@10#. They have calculated the number of transi-
tions between the basins during 10 000 time steps in their
molecular dynamics. They assumed the time unit
Dt50.001 25, and the system sizeN532. By changing the
time unitDt from 0.001 25 to 0.01 and by using the relation
s(t)5Nc(T)t, we havec(T) given by

c~T!.
AT

126.325
e22.163/T. ~38!

For this system, we calculatedtp as a function ofT ~tp and
tq are plotted in Fig. 10 as a function ofT!. tq depends on
T more rapidly than doestp . This rapid dependence deter-
mines the position at which the curve oftp crosses that of
tq . From this figure, we theoretically obtain the transition
point T*.1.6–1.7. Here we usedr p,p8(0)5h/L, whereh is
the Planck constant andL51 cm. On the other hand, using
the results of the computer simulation performed by Still-
inger and Weber, we haveT*.1.6 @10#. This agrees well
with our theoretical resultT*.1.6–1.7.

For this system, we also calculated the diffusion constant
Dq(T) to give

Dq~T!.
AT
256.4

e22.16/T ~39!

for the region 1.3,T<3.0. By inserting this andc(T) in Eq.
~38! into Eq. ~35!, we have a reasonable basin size,
l q
2.0.49e0.03/T or l q.0.7e0.015/T, which is close to 0.77, the
distance between the nearest neighboring particles of the fcc
structure. The weakT dependence of the estimated size is
regarded as negligible within the error of the computer simu-
lations.

In this section, we have confirmed our assertion that the
T* satisfying thes~T* !51 in Eq. ~34! is the transition point
that determines whether or not asymmetric motion occurs.
The transition points calculated by using the largest
Lyapunov exponents andc(T) are in excellent agreement

FIG. 8. The diffusion constantDq(T) as a function ofT, calcu-
lated for the LJ system ofN5108 andd53 for the random con-
figurations. The unit of the horizontal axis is the energy unite0
@appearing in Eq.~2!#, and that of the vertical axis is the length unit
l @appearing in Eq.~2!#. The magnitude of the diffusion constant is
insensitive to the system sizeN; the result forN5108 is identical to
that ofN5500 or 864.

FIG. 9. tp andtq as a function ofT for the LJ system ofN5108
and d53. The unit of the horizontal axis is the energy unite0
@appearing in Eq.~2!#, and that of the vertical axis is the time unit
Dt (50.01A$ l 2e0 /m%).
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with the results obtained by performing computer simula-
tions for two types of interaction potential. Furthermore, it
was found that the expression for basin size obtained by
applying the phenomenological arguments, which is given in
Eq. ~34!, yields reasonable basin sizes.

VI. CONCLUSIONS AND DISCUSSION

A. Summary

We have studied the dynamical properties of Hamiltonian
systems having a many-basin structure. The many-basin
structure of the potential surface produces a variety of phase
dynamics, i.e., the motion among basins and the motion
within a basin. The motion within a basin has been studied
with two types of the particle configurations, i.e., ordered
and random. For the ordered configurations, the collapse of
the KAM torus occurs at the finite kinetic energyT 0

c. For the
sufficiently small kinetic energy 0,T<T 0

c, the phase point
is trapped on the KAM torus corresponding to the fcc or-
dered configuration. This finite stochastic transition has been
also found for one- or two-dimensional systems with single-
basin structures such as the Fermi-Pasta-Ulam model, the
Lennard-Jones model, and so on. On the other hand, for ran-
dom configurations, stochasticity occurs for even sufficiently
small kinetic energy. Due to the fact that most basins have
random configurations, the chaotic sea may prevail over
most of the availableG space. From this, it is suggested that
the phase point may move around the various basins.

The motion of phase point among basins is classified into
three types of motions, depending upon the magnitude of
kinetic energy. These are further classified according to
whether or not asymmetric motion occurs. The dynamic ori-
gin of the asymmetric motion is clarified by introducing the

notion of intensity of motion in phase space, the degree of
which is measured bys(T)5tp(T)/tq(T), wheretp(T) is
the time scale during which mixing is accomplished in the
momentum space, whiletq(T) is the time scale during
which the phase point passes over the given basin. The
asymmetric motion is attributed to the transient formation of
the canonical probabilistic measure. Thes(T) is expressed
in terms of the dynamical quantities. Our assertion is con-
firmed by performing the numerical calculations thatT* sat-
isfying s~T* !51 is the transition point of whether or not the
asymmetric motion occurs. For the occurrence of asymmet-
ric motion, the relaxation dynamics in the momentum space
are completed faster than the diffusion dynamics in the co-
ordinate space, causing the dynamics to proceed so as to
increase phase space volumeV or entropy for the momen-
tum space. This is the reason why the ordered phase emerges
among many random configurations. The notion of intensity
of motion is expected to help in discovering a generation
principle of ordered phases of condensed matter out of many
configurations.

B. Other properties of type 3

The following dynamical properties are observed in addi-
tion to intermittency and asymmetric motion.

~a! Strong dynamical instability during the intermittent
transition. The absolute diffusion length,aq(t) of the phase
point, grows exponentially with timet,

aq~ t !.aq~0!elr
at, ~40!

whereaq(t) is defined by

aq~ t !
25

1

Nd (
ja

uqja~ t !2qja~0!u2. ~41!

This is defined for the single trajectory, being sensitive to the
trajectory ~the initial condition!. The intermittent transition
occurs fast. The instability ratel r

a is a few or several times
greater than the largest Lyapunov exponent for the motion of
phase point staying within a basin. Theaq(t)

2 grows expo-
nentially with time during the intermittent transition, which
should be in contrast to that for the normal diffusion in
which it increases linearly with time. The absolute diffusion
length during the intermittent transition is shown in Fig. 11
as a function of timet. The intermittency occurs from
t510 000 to 10 250. The exponential growth ofap,q(t) on t
in Fig. 11~a! is ambiguous since the momentum part,ap(t),
rapidly oscillates, as shown in Fig. 11~b!. By excluding this
rapidly oscillating part fromap,q(t), the exponential depen-
dence becomes clear, as shown in Fig. 11~c!.

~b! Many-transition-path formation. The phase points
with two different initial conditions, $pi(0),qi(0)% and
$pi8(0),qi8(0)%, set in a given basin follow different transi-
tion paths. This property means that there are many transi-
tion paths starting from the given basin. The dynamics fol-
lows the different paths, indicating the formation of a many-
transition path.

The following three properties~c!, ~d!, and ~e! are seen
from Fig. 12.

~c! Easy-path formation. A few particles move along the
line topology in the three-dimensional real space; only these

FIG. 10. tp andtq as a function ofT for the truncated LJ system
of N532 andd53, similar to Fig. 9. The units of the horizontal and
vertical axes are the same as those in Fig. 9.tq was obtained by
modifying the result by Stillinger and Weber.tp is calculated here
for N5108; it is found that the magnitude oftp is insensitive to the
numberN of particles.
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seem to move before the transition occurs. This implies that
the potential barrier is finite, being irrelevant to the system
size.

~d! Cascade collapse: the other remaining particles follow
the motion of a few particles. This implies that the transition
occurs between two basins whose spatial distance is remote.

A change of particle configuration is caused by the inter-
mittent transition occurring at aboutt53800 in the figure.
The configuration of particles in the cube looked at from the
y axis is indicated. The coordinates of particles are given by
$xi ,yi ,zi%. The configuration~at the local minimum! before
the intermittent transition is indicated by particles shown by
green circles, while that after the intermittent transition is
indicated by particles shown by red circles. The red lines
indicate a change of coordinate for particles during intermit-
tent transition. The large~or small! change is indicated by
the bold ~or solid! red lines. The bold lines form the line
topology, suggesting an easy-path formation. By studying
the time-dependent diffusion length of each particle, it is
found that the intermittent transition occurs as follows: par-
ticles 81 and 82 move first. Particles 9 and 26 move; particle
9 moves to fill a hole left after the movement of 81, and
particle 26 is pushed up by particle 82. Subsequently, par-
ticles 61 and 75 move. Finally, the other remaining particles
relax into the next stable configuration. Just a few particles
move before transition, suggesting that the potential barrier
is finite, irrelevant to the system size, and cascade collapse.
The other remaining particles follow the motion of these
particles, suggesting that there arises a transition between
two stable configurations whose distance is remote. This,
however, does not imply that a few particles trigger transi-
tion. The other particles can be considered to prepare their
local motion. For these motions, it seems difficult or even
meaningless to answer the question of what triggers the mo-
tion. The transition motion of type 3 is different from the
Arnol’d diffusion and the induction phenomenon because
type 3 is chaotic.

There are other types of particle dynamics during inter-
mittent transition. For example, two particles move at the
same time before the other particles follow. It is often ob-
served that a few particles move before the others follow
them.

~e! Complex connectivity of transition paths.
The motion of type 3 relates to the complex connectivity

of the transition path between basins. The phase point as-
sumes the valueVi intermittently during transition. The po-
tential energy is shown in Fig. 13~a! along the shortest path
~straight line! connecting two local minima of basins be-
tween which the intermittent transition occurs. The broken
line indicates the potential energy along this line. The bold
line indicates which basin the spatial point along the shortest
path belongs to. It is noted that someVi ’s are different from
those of the initial and final basins. This means that some
basins intersect between the initial and final basins. The
schematic landscape of the potential surface is shown in Fig.
13~b!. The intermittency bypasses the basins’ intersecting.
The complex connectivity of the transition path causes the
intermittency. This is in contrast to the motions of types 1
and 2; no other basin intersects with the initial and final
basins between which the motion of the phase point occurs
actually. One of the indices used to measure the complexity
of the transition paths is the number of other basins intersect-
ing between the initial and final basins.

FIG. 11. ~a! Logarithm of the absolute diffusion length during
the intermittent transition forN5108. The unit of the horizontal
axis is the time unitDt (50.01A$ l 2e0 /m%), and the unit of the
vertical axis is obtained by using the length unitl @appearing in Eq.
~2!# but is arbitrary. The intermittent transition occurs from
t510 000 to 10 250. The phase point stays in one local minimum
for t,10 000, and stays in another local minimum for 10 250,t.
The absolute diffusion lengths are defined byap,q(t)

2

5ap(t)
21aq(t)

2, whereap(t)
2 is the momentum part defined by

ap(t)
25( i upi(t)2pi(0)u

2/3Nd, andaq(t)
2 the coordinate part, de-

fined byaq(t)
25( i uqi(t)2qi(0)u

2/3Nd. From this figure, the ex-
ponential growth ofap,q(t) is ambiguous.~b! Logarithm of mo-
mentum diffusion length, ln„ap(t)…, rapidly oscillates and is similar
to ~a!. The time intervals observed in the top and center figures are
the same but different from that in the bottom figure.~c! Logarithm
of a coordinate diffusion length ln„aq(t)…. The function of ln„aq(t)…
is linear betweent510 000 and 10 250, showing the exponential
dependence ofaq(t). The dotted line is a guide for the eye.
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The intermittent transitions are observed@35,36# for many
dissipative and conservative systems with many degrees of
freedom, similar to type 3.

C. Directions for future work

The major problems remaining in this work are listed
here:

~1! For investigating the asymmetric motion, we used the
concept of ensemble of the trajectories for the mixing dy-
namics in the momentum space. This use challenges a pic-
ture of the phase point moving in the phase space.

~2! There is an asymmetry that causes the time scalestp
andtq to be incorporated into the expression ofs(T). tp is
concerned with the mixing dynamics in the momentum
space, whiletq is concerned with the diffusion dynamics in
the coordinate space. The mixing is concerned with the en-

semble of trajectories, whereas the diffusion is concerned
with a single trajectory. Why does this asymmetry appear?

~3! The asymmetric motion has been discussed on the
basis of the many-basin structure. The celestial systems or
Coulombic systems may have no many-basin structure. Are
our arguments for the asymmetric motion valid for these
systems? How can we expand our arguments to these sys-
tems?
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APPENDIX

The equations of motion for$p ja
0 (t i),q ja

0 (t i)% and
$pja(t i),qja(t i)% ~j51,...,N; a51,...,d! at time t i5t01 iD t

FIG. 12. A change in particle configuration caused by the intermittent transition occurring at aboutt53800 in Fig. 4~c! for N5108. The
configuration of particles in the cube viewed from they axis is indicated. The coordinates of particles are given by$xi ,yi ,zi%. The
configuration~at the local minimum! before intermittent transition is indicated by particles shown by green circles, while that after the
intermittent transition is indicated by particles shown by red circles. The red lines indicate change in the coordinates of particles during
intermittent transition. The large~or small! change is indicated by the bold~or solid! red lines. The bold lines form the line topology,
suggesting an easy-path formation. By studying the time-dependent diffusion length of each particle, it has been found that the intermittent
transition occurs as follows: particles 81 and 82 move first. Particles 9 and 26 then move; particle 9 moves to fill a hole left after the
movement of 81, and particle 26 is pushed up by particle 82. Subsequently, particles 61 and 75 move. Finally, the other remaining particles
relax into the next stable configuration. This analysis implies some properties: Localness: just a few particles move before transition,
suggesting that the potential barrier is finite and unrelated to the system size; Cascade collapse: the other remaining particles follow the
motion of a few particles, suggesting that there is a transition between two transiently stable configurations whose distance is remote.
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wheret0 is the initial time andDt is the time step, is given by
the following Euler equation:

qja
0 ~ t i11!5qja

0 ~ t i !1D tpja
0 ~ t i !,

pja
0 ~ t i11!5pja

0 ~ t i !1D t (
k~Þ j !b

qkb
0 ~ t i11! f jakb

0 , ~A1!

qja~ t i11!5qja~ t i !1D tpja~ t i !,

pja~ t i11!5pja~ t i !1D t (
k~Þ j !b

qkb~ t i11! f jakb , ~A2!

where

f jakb
0 52

]2v@qlg
0 ~ t i11!#

]qja
0 ~ t i11!]qkb

0 ~ t i11!

f jakb52
]2v@qlg~ t i11!#

]qja~ t i11!]qkb~ t i11!
. ~A3!

The equation for the time evolution of the quantities
$dpja(t i),dqja(t i)% along the trajectory$p ja

0 (t i),q ja
0 (t i)%,

where dpja(t i)5pja(t i)2p ja
0 (t i) and dqja(t i)5qja(t i)

2q ja
0 (t i), is obtained from Eqs.~A 1! and ~A 2! by assum-

ing thatdpja(t i) anddqja(t i) are sufficiently small:

dqja~ t i11!5dqja~ t i !1D tdpja~ t i !, ~A4!

dpja~ t i11!5dpja~ t i !1D t (
k~Þ j !b

dqkb~ t i11! f jakb
0 ,

5dpja~ t i !1D t
2 (
k~Þ j !b

pkb~ t i ! f jakb
0

1D t (
k~Þ j !b

qkb~ t i ! f jakb
0 . ~A5!

Here, we used Eq.~A4! to get the final equation in Eq.~A5!.
Equations~A4! and ~A5! are rewritten symbolically as

S dpja~ t i11!

dqja~ t i11!
D5G@pja

0 ~ t i11!,qja
0 ~ t i11!#S dpja~ t i !

dqja~ t i !
D .

~A6!

As seen from Eqs.~A4! and~A5!, the Jacobian of the trans-
formation matrix from$dpja(t i),dqja(t i)% to $dpja(t i11),
dqja(t i11)% is equal to unity, ensuring the area preserving
property of the shift mapG[p ja

0 (t i11),q ja
0 (t i11)]. The

growth rate, the largest Lyapunov exponent of the time evo-
lution $dpja(t i),dqja(t i)% along the trajectory$p ja

0 (t i),
q ja
0 (t i)%, is obtained as the limiting value~i→`! of the

quantityl( i ), which is defined by

l~ i !5
1

2iD t
(
n51

i

ln Tr$ tG@pja
0 ~ tn11!,qja

0 ~ tn11!#

3G@pja
0 ~ tn11!,qja

0 ~ tn11!#%. ~A7!

Here, we used the notationi to express the time. The symbol
Tr[x] means the trace of the matrixx, and the suffixt on the
left shoulder of the matrix stands for its transpose. As dis-
cussed in the text, there is a possibility that the phase point
may escape from the basin during a long run and for a larger
kinetic energy. The growth ratesl of the time evolution of
the trajectories are calculated for the time interval within

FIG. 13. ~a! Plot of the potential energy on the shortest path
connecting the local minima of two basins between which phase
transition actually occurs for the LJ system ofN5108, indicated by
the broken line. The bold lines indicate which basin the spatial point
along the shortest path belongs to. There are someVi ’s which are
different from those of the initial and final basins. This means that
there exist some basins intersecting between the initial and final
basins. The length unit of the horizontal axis is taken as arbitrary,
and the unit of the vertical axis is the energy unite0 @appearing in
Eq. ~2!#. ~b! Complex connectivity of the transition path among
basins for the motion of type 3, corresponding to the intermittent
transition in~a!. Similar to Fig. 1, the schematic landscape of the
many-dimensional potential surfaceV[qja] is shown. The intermit-
tency bypasses the intersecting basins. The complex connectivity of
the transition path causes the intermittency. This is in contrast to the
case of motions of types 1 and 2; no other basin with the initial and
final basins~indicated by the shaded region! between which the
motion of phase point actually occurs.
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which the phase point stays in the single basin, i.e., for the
typical i<200, and are averaged over the many different tra-
jectories starting with phase points$p ja

0 (t i),q ja
0 (t i)% con-

fined in the single basin.
The Lyapunov spectra can be obtained as the growth rates

of the orthonormal vectors spanned in theG space, whose

number is 2Nd. The equation of motion they obey is given
by Eq. ~A 6!. They become nonorthonormalized as the dy-
namics proceed. Then a new set of orthonormal vectors are
obtained by using Schmidt’s orthogonalization technique. By
using this procedure repeatedly, we have the Lyapunov ex-
ponents averaged along the trajectory$p ja

0 (t i),q ja
0 (t i)%.
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