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Hamiltonian systems with many degrees of freedom:
Asymmetric motion and intensity of motion in phase space
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This paper studies the dynamics of Hamiltonian systems with many degrees of freedom by emphasizing the
many-basin structure. Three-dimensional systems in general have a many-basin structure corresponding to their
many stable configurations. This is in contrast to the single-basin structure of one- or two-dimensional systems
including the Fermi-Pasta-Ulam model, the Lennard-Jones model, and so on. The motion of the phase point
within given basins is examined depending on the type of configuration, ordered or random. The stochastic
transition in which the Kol'mogorov-Arnol'd-Moser torus collapses occurs at a certain kinetic energy for
ordered configurations, similar to the behavior of one- or two-dimensional systems, but not for random con-
figurations. This suggests that the chaotic sea prevails over the phase space with random configurations. The
motion of phase point among basins is described by a Bernoulli-like shift map and classified into three types
of motion, depending on the magnitude of kinetic energy: types 1, 2, and 3. Furthermore, such motion is
divided into two classes of motion, depending on whether or not asymmetric motion takes place. By asym-
metry we mean that the motion is unidirectional to lower basins in energy. The asymmetric motion is the
dynamical manifestation of ordered phases emerging from many other random ones and occurs for types 2 and
3 but not for type 1. The dynamical origin of asymmetric motion is investigated by introducing the notion of
intensity of motion in phase spaaghich is measured by=r7,/7, (7, the time scale of mixing dynamics
in the momentum spacey: the time scale of diffusion dynamics in the coordinate space is expressed
in terms of dynamical quantities. Our assertion that two classes of motion are separated by the decisive point
o=1 is confirmed by performing computer simulations. The asymmetric motion is attributed to the transient
formation of the canonical probabilistic measure before completion of relaxation. The notion of intensity of
motion in phase space is expected to help in discovering a generation principle of ordered phases of condensed
matter from many random ones. The dynamical properties of type 3 are also examined and discussed in detail.
[S1063-651%96)06311-9
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I. INTRODUCTION many possible configurations of atoms depending on the pa-
rameter values involved. Besides crystalline states, there ex-
Materials conceal themselves in a wide variety of phasedst in nature many condensed phases including glassy states,
not all of which have been revealed, as has been witnessedlipercooled liquids, clusters of atoms, and so on. In order to
by the complexity of materials in the past decadl¢?]. Yet  offer a unifying principle for understanding condensed phase
for any given material, a common set of interactions at theproperties of anN-atom system, Stillinger and Webg5]
atomic or molecular level underlies all phases of the mateadvocated the approach of shifting from ordinary three-
rial. More than three decades ago, Ander¢Bh raised a dimensional space to the N3dimensional configuration
question: What is a solid? In other words, why is the groundspace, where collective phenomena in condensed phases are
state of almost any assemblage of atoms regular, and why adetermined. In his investigation of the glass-forming process,
there no cases of glassy lowest energy states? More impoone of the authorf6] extended Stillinger and Weber’s idea
tant is the fact that this question is begging for a principle ofto find the phenomenon of the asymmetric motion of the
condensed phases generating from many possible configurphase point in a Lennard-Jones system. At high kinetic en-
tions of atoms. Since the last decade, interest has gradualergy, the phase point wanders erratically over various local
grown in the understanding of a variety of condensed phasesinima in the 3\-dimensional configuration space. As the
from a deterministically dynamical point of view. In particu- kinetic energy is decreased, it begins to wander erratically,
lar, Aubry [4] made an intensive study of the Frenkel- but as time passes it stays for a long time at a local mini-
Kontorova model to find the crystalline ground state amongnum. As time passes further, it moves to another local mini-
mum which is lower in energy than the former.
This raises a question: Why and how is the kinetic energy
*Present address: ATR Adaptive Communication Research Labdrozen? In order to address this question, it is necessary to
ratories, Seika-cho, Soraku-gun, Kyoto 619-02, Japan; Electronistudy deterministically dynamical systems. Such a study has
address: shinjo@acr.atr.co.jp a long history since Boltzmann invoked the ergodic hypoth-
Electronic address: sasada@la.shonan-it.ac.jp esis in constructing statistical mechanics. However, to our
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knowledge few works have gone beyond the case wherplace, and the motion among basins is very erratic. Con-
there is only one phase such as gas, liquid, or crystal; accordersely, whero<1, asymmetric motion takes place, causing
ingly, such approaches are not sufficient to address the abotke volume of the momentum space to increase. The asym-
guestion. metric motion is attributed to the transient formation of the
In this paper we repeat and extend some of the resultganonical probabilistic measure before completion of relax-
given in the previous papef§] and investigate the dynami- ation. The notion of the intensity of motion in phase space is

cal behavior of Hamiltonian systems with many degrees of*Pected to help in discovering a generation principle of or-
freedom in which there are many local minima in the con-dered phases of the condensed matter out of many random

figuration space. This work has two aspects: the theory of"€S: , _ , _
deterministically dynamical systems and condensed matte The outline of th's_ paper s as follows. Section Il presents
physics. It is the former on which this paper concentrr:ltes?.e mo_del and prowdes de_tall_s on the mo'ecu'?'?'dyﬂam'cs
From the dynamical point of view, matter is the dynamicalSlrnulatlon teghmque. A periodic poundary F:ondltlon IS 1m-
state of a Hamiltonian system that is represented by a pha?é’sed to avoid the cluster formatlpn of.pa_\rt|cles. Sectlon i
point in a phase space with extremely high dimensions. FrorRresents results for both the motion within a basin and the

the macroscopic point of view, each visible phase is a poin1[“|1ot|0n among basins. Section IV examines the behavior of

of the coordinate space, i.e., the configuration space embeg-rbitS in the phase space. The notion of the intensity of mo-

ded in the phase space. We call the region surrounding on in pgas?. spa\fe IS m'grodutcr(]ed to Clﬁ”fyfthe motlton amng
local minimum a “basin.” The formation of the many-basin asins. section V-examines the results o computer simufa-

structure produces a variety of dynamics such as the motiofio"S © evaluate our assertion that the decisive point of

among basins and that within a basin. The motion of phas@’hether or not asymmetric motion takes place is given by

point among basins is the dynamical source of the manygzl' Section VI gives our conclusions and discusses direc-

particle systems changing configurations and condensed maﬂ(—mS for future work.
ter phases. Thus, the study of motion among basins is a

central issue in various fields such as the physics of dynami- Il. HAMILTONIAN SYSTEMS

cal systems, the physics of condensed maftecluding AND THE MANY-BASIN STRUCTURE
glassep and the physics of statistical mechanics. The num-
ber of basins depends on the spatial dimensions, the type of
interaction potential, and the number of particles. The system The system we consider is given by the following Hamil-
we mainly deal with is a three-dimensional Lennard-Jonegonian equations;
system ofN particles that can cause a variety of condensed

A. Hamiltonian

. . R Nd 2
phases. However, the results given in this paper may be ap- 1 Pja
plied not only to the Lennard-Jones system, but to any sys- HIPja Gjal= 2 % FJFV[an])'
tem with a many-basin structure.
In order to describe the motion of the phase point, it is
convenient to separate it into the motion within a basin and Vg, ]= > v(gi), (1)
the motion among basins. The motion within a basin depends & :

on a property of basins, namely, the particles’ configuration;

the motion within an amorphous structure is much more stowherem is the mass of the particle anqq;,) describes the
chastic than that within a crystalline one. It has been showinteraction in whichgj, is the distance between particlgs
that a stochastic transition takes place between ergodic arahdk. p;, andg;, are the canonical conjugate variables,
nonergodic states in the latter, while such a transition is abthe o components of the momentum, and the coordinate of
sent in the former. The motion among basins is very complithe jth particle.N is the number of particles, andl is the
cated. It was found in a previous paper that there are threeumber of dimensions of the real space in which the system
types of motion among basins depending on the magnitudis embeddedV[q;,] is the potential surface, the number of
of kinetic energy. Asymmetric motion takes place as the ki-dimensions of which is equal tdld. The phase point de-
netic energy is decreased. By asymmetry we mean that thecribing the dynamical state of the system is described by the
motion is unidirectional to lower basins in energy. Under-set of{p;,,d;,}, @ point in the phase space or thespace.
standing this phenomenon is the main purpose of this papefhe number of dimensions of tHéspace is Ad. Through-

To do this, we examine the behavior of orbits in the wholeout this paper we use the notationandk to number the
phase space in two ways. One is to examine the diffusion gbparticle and the notatiom to express the time, such that
a single orbit, and the other is to study the evolution oft;=ty+iA in Sec. lll B andt;=ty+iA, in the Appendix,
distance between nearby orbits in an initial stage. Analyzingvheret is the initial time andA and A, are the time steps.
the behavior of these quantities, we induce two time scales, Let us define the interaction potential. Two conditions are
7, and ;. 7, is the time when nearby orbits forget their imposed onwv(q): (i) —«<v(q) for any q and (ii)
initial conditions, which is identical to the notion of the re- v(q)<q ¢ for a largeq. Condition (i) ensures stable con-
laxation time for the momentum space of Krylp¥], who figurations of particles, while conditiofii) ensures the ther-
estimated the rate at which the orbits diverge for the hardmodynamics limit, excluding the inhomogeneous distribu-
sphere gas. 7, is the sojourn time of the phase point in a tion of the particles. Conditior(i) excludes Hamiltonian
single basin. The ratio=7,/7,, which we call the intensity systems such as the celestial and the Coulombic ones from
of motion in phase space, is found to control the motionour considerations, in which the particle configuration is sta-
among basins. Whem>1, asymmetric motion does not take bilized by the motion of the constituent particles. Throughout
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found to beM[32]=157, yieldingu=0.16. From this value,
M[108]=3.2x10" has been obtained fot=108. There is a
variety of configurations, i.e., random and ordered ones. A
many-particle system forms the face-centered-ciioic) or-
dered configuration at the ground state and random configu-
rations at higher potential energy states. The number of ran-
dom configurations is overwhelmingly larger than that of the
ordered configurations. When considering the motion of
phase point in thé' space, it is natural to separate its motion
into that within a basin and that among basins. In what fol-
lows, we shall investigate the transient dynamical properties
of the Hamiltonian system witNi>1, focusing on the many-
basin structure. By transient, we mean that the observation
time of the dynamical behaviors is shorter than or equal to
the relaxation time(These time scales will be discussed in
Sec. lll) Then, it is helpful to ask whether or not the quan-
tities of interest have the additive property and whether or
not the quantities normalized By vanish in the limitN—oo,

Investigations of dynamical properties are performed us-
ing the standard molecular-dynamics technique, i.e., Verlet's
o _ [11] and Runge-Kutta's algorithms. The periodic boundary
FIG. 1. The simplified topography of the potential surface -gndition is imposed on the systeM[q;,] =V[q;,+n°L]
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V[q;,] projected onto the two-dimensional space. The bold dotsm Eq. (1), wheren® is any integerL is determined by using
: . N . ; 'the thermodynamic relation, the virial theorem relating it
The region surrounded by the ridge lines is a basin. The trajectory Sith system pressure,
generated by the Bernoulli-like shift mag,;=¢V;. V; is the 1 Nd
potential energy at the local minimum of the basin, satisfying the pLd== E p;
df '«
trajectory illustrated in this figure is presented by
{-...V1,V,,V3,V3,V,, V5, V5, Vs, .. ). whered; ko= 0jo— ke - This is used to determine at the
a large part of this paper, the interaction potential is taken td®>=0. The term on the right-hand side of this equation is
be the Lennard-Jond&J) potential of the form evaluated for the single trajectory starting from the initial
is noteworthy that the ergodicity property is not assumed in
2 Eq. (3). The virial theorem usually holds when we average
The LJ potential has a conflicting nature of interactions, so iglong the single trajectory under the ergodic assumption that
produces a complex potential energy landscape that consigige time average is equal to the average of the ensemble of
system wherN>1. The topography of the potential energy availableI" space. P does not generally keep its initial
V[a;,] is projected onto the plane as illustrated in Fig. 1.value as time elapses for the fixed
each of which contains one minimum ¥{q;,]. The bold scaled form in which mass, distance, energy, and time are
dots stand for the local minima and the dotted lines for themeasured by using units oh, |, €, and 0.01/{I%&,/m}
All basins are connected, but not necessarily simply confar dynamics. The quantity, defined by
nected. The configuration of the particles within a basin is
potential barrier between the basins may not be extensive or T= d €K “)
the size of certain basins may be too negligible to contribute
The numbeM[N] of the basins with different configura- acterize the kinetic energy of the system, which corresponds
tions increases very rapidly for larger systef89]; it is at  to the temperature in the thermodynamics.
on the system. This exponential form has the additive proplecular dynamics isN=4n3 (n is a positive integér so the
erty of M[N;+N,]=M[N;]M[N,], implying that the particles can have the fcc configuration. The valudlafsed
particles is produced by combining the many-basin structureperformed by assumind=3.
of two subsystems withl; and withN,. For the truncated LJ In the remaining part of this section, we study the motion

stand for the local minima, and the broken lines for the ridge lines
indicated by a bold line. As described in Sec. Il B, the trajectory is
relationV;=V[q;,]/3dN (V[q;,] is the total potential energyThe
initial stage by putting the system pressi#esqual to zero:
f12 (e condition in thel” space, keeping the total energy constant. It
(a) : (6) | the terms on the right-hand side of E8) over a long time
of many valleys and hills in the configuration space of thetrajectories uniformly scattered over the whole region of the
The Nd-dimensional coordinate space is divided into basins, All the quantities for the LJ interaction are expressed in
ridges. The region surrounded by the ridge lines is a basif=A4,), respectively. A is the time step used in the molecu-
not in a stable phase in terms of thermodynamics because the 2
to the thermodynamical quantities. where g is the kinetic energy per particle, is used to char-
most proportional t@*N, whereu is a constant depending The number of particles used in the investigation of mo-
many-basin structure of the system consisting f{ N,) is 32, 108, 256, 500, or 864. All calculations in this paper are
potential, the number of the basins was couni&d] and of phase point within a basin.
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B. Motion within a basin

In previous works, the dynamical properties have been }7'
discussed12-17 for one- or two-dimensional systems hav-
ing a single basin. The occurrence of the stochastic transition
in which the Kol’'mogorov-Arnol'd-MosefkKAM ) torus col-
lapses has been the main issue, which is related to the er-
godic property of the system showing the equipartition law
where the kinetic energy is equally distributed over the de-
gree of freedom. The Arnol'd diffusiofiL8,16], the equipar-
tition [19—21], and the Boltzmann-Jeans freezing of the high
frequency mod¢22—24 have been examined as dynamical
characteristics of many-particle systems.

For a system having the many-basin structure, we inves-
tigate the dynamical properties of the motion within a basin. s e
For the cases where the potential barrier separating one basin s o0
from other basins is high, the motion of phase point is con- 0.0 I [P 1 1 !
fined in the initial basin. For the other cases, the phase point
escapes from the basin and wanders among the basins. Itis a
formidable task to estimate the potential barrier height for all

. e . . FIG. 2. The largest Lyapunov exponent as a functio dbr
basins. When the kinetic energy is sufficiently small, thethe LJ system oN=108 andd—3 for two types of configurations:

phase pomrt] stabys n thlfdlfrltz)alogasrl]n folr] a Iong_ time befprefcc ordered and random.T characterizes the kinetic energy, which
going t‘? other _asms. =0.05, the phase point stays in is defined in Eq(4). The unit of the horizontal axis is the energy
the basin for a time of<500. unit €y [appearing in Eq(2)], and that of the vertical axis is A,

We study the dynamical instability of the trajectories of whered, is the time unit: A,=0.01,{T%eq/m}.
the phase point. The time evolution of the separation be-

tween the nearby trajectories is examined. A method evaluis likely to remain finite even for the cadé—~. For ex-
ating the evolution rate of two trajectories cannot be appliechmple for the LJ systems consisting of Ar particlds
because the dynamical quantitigs, are confined within a amounts to=4.3 K. This value agrees well with the 5 K
very small region near the local minintgig. 1). Instead, we transition energy for the two-dimensional LJ system of Ar
set up the equation of motion for small quantities particles withN=64[25,26. For the small kinetic energy of
5pja(t)[=pja(t)—p?a(t)] and 6qja(t)[=qja(t)—qd°a(t)] T<TJg, the phase point is trapped on the KAM torus. This
(j=1....N; a=1,...d) along the trajectoryp,(t).q{.()}.  means that thd" space is divided into many mutually dis-
This method makes it possible to obtain the Lyapunov expojointed invariant measures. Most basins have random con-
nents, which are evaluated for the time before the phasfigurations. The stochastic transition poiR is insensitive
point goes to other basins. Consequently, the definition of théo the degree of randomness of configuration as well as to the
Lyapunov exponent here is different from the usual defini-system sizeN (>1). It is important that the stochastic tran-
tion, in which they are quantities averaged over long timessition pointT ; vanishes. This suggests that the volume of the
under the ergodic assumptidiDetails of the calculations are T' space occupied by the KAM torus is so small that the
given in the Appendix. phase point wanders in the chaotic sea connecting most re-

The growth rate is averaged over many initial conditionsgions in theI" space, provided that the kinetic energy is
set in the initial basin for the system. The largest Lyapunowreater than the potential barrier between basi@s.The
exponents calculated fdd=32 and 108 are calculated: the trajectory instabilities are stronger for the random configura-
result forN=108 is almost identical to those fté=32. In  tions than for the ordered configurations.

hS
0,
~

‘ ordered configuration

’ D—"E'
P o

Largest Lyapunov exponents
..

Fig. 2, the largest Lyapunov exponents fbi=108 are The spectra of Lyapunov exponents is shown in Fig. 3 for
shown as a function of for the two types of the configura- the system oN=108, assumind =0.05. The Lyapunov ex-
tions of particles, ordered and random. They read ponents, whose number igIRl (=648), are arranged in de-
] ] ] scending order(The method of calculations is also given in
A(T)=6.3T—Tp), T;=0.0; Tp<T=<0.05 the Appendix. The following properties are concluded for
the Hamiltonian systems. The sum of them exactly vanishes,
for random configurations, (5)  as concluded from the Liouville theorem that the phase space
volume is kept constant. A pair of,, and A\oqn_m+1 SuUch
Ne(T)=1.2T~-Tg), T§=0.023; Tg<T=<0.05 that X ;= — Aogn—m+1 (1=m=dN) always appears, as con-
cluded from the time reversibility of the equation of motion.
for fcc ordered configuration. Among many Lyapunov exponentsd 2=6) pieces exactly

vanish, as concluded from the translational symmetry along
From this, we observe the following featuré¢4) The sto- X, y, andz directions.
chastic transition poinfTg or T§) at which the Lyapunov The calculated spectra show that six pieces of Lyapunov
exponents vanish depends on the particle configuration: it isxponents do not vanish due to the bad convergence, espe-
finite for the fcc configuration, while it vanishes for the ran- cially for the small\,,. It is found that the gap nea,,=0
dom configurations. For the fcc-ordered configuratibf,is  becomes narrower as the run time is extended; the existence
found to be insensitive to the numbidrof particles; thus, it  of the gap is attributed to the method in which the transla-
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Lyapunov spectra (N = 108)

A " L . A .

Maximum Lyapunov exponent (1/A,)

0 300 600

Number

FIG. 3. The Lyapunov spectra for the LJ system whth-108
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flat potential surface; each particle changes its direction of
velocity with time but keeps its magnitude constant. The
relaxation time is related to the ensemble of trajectories,
whereas the recurrence time is concerned with a single tra-
jectory. For systems with many-basin structures, the magni-
tude of velocity as well as its direction changes for each
particle. It is a formidable task to estimate the relaxation time
for such systems because of the lack of a general method to
confirm the completion of the relaxation process. The relax-
ation time may be extremely long, as is seen for the glassy
phases. In the following subsection, we shall observe the
motion of phase point among basins for the observation time,
satisfying the relation €7,p=<Tejax (< Trecu)-

B. Shift-map description

The trajectory is described by a set{@f;,(t),q;,(t)} for
a continuous timé. Change in the configuration is produced

and d=3 with T=0.05. The Lyapunov exponents numbered by aby the motion among basins in the potential energy surface.

positive integer less than or equal tdI2 (=648 are arranged in
larger order. The unit of the vertical axis isAl/ whereA, is the

For this, it is convenient to characterize the motion by using
the basin to which the phase point belongs. The method of

mapping the trajectory onto the basin was invented by Still-
inger and Webef10,5]. The configuration at the local mini-

tional symmetry of the Hamiltonian is not taken into ac-Mum of the basin is called the inherent structure. Their
count. The shape of the spectra does not change drasticasg}eth‘?d is used here to obtain the Bernoulli-like shift-map
as the run time is extended. The magnitude of the largedf€scription for the motion among basins, thus allowing clas-
Lyapunov exponents agrees well with that shown in Fig. 2_5|f|(_:at|on of the motion among basins. Let us cons_lder t_he
These observations imply that the overall shape of the spe&€ries of phase points measured at every predetermined time:
tra and the magnitude of the largest Lyapunov exponents af@ia(toT14),0j,(to+i4)} (i=1,2,..). (Note that the nota-
reliably consistent. The spectra are downwardly convex fofion 1 is used to express the time, but not the particle num-
the positive region\,,>>0. This implies that in thd” space €. The series given by a set fdjj,(to+iA)} is numbered

the directions along the trajectory are divided into two dis-d€pending on which basin the phase point belongs to; the
tinct directions, those with strong instability and those with basin for the phase point starting at tiet, is represented
weak instability. The shape of the Lyapunov spectra is als®Y the number 1. The basin at next time- A is represented

insensitive to the degree of randomness of configuration. PY 2(or 1) if itis different from (or the same adasin 1. The
basin at time+2A is represented by 3 if it is different from

the previous basins 1 and 2, and represented tr 2) if it
is the same as basin(@r 2). By repeating this procedure, the
trajectory is described by a series of numbghe value ofA

_ _ _ is appropriately chosen so as to characterize the motion,
We study the inherent dynamics of the many-basin strucwhich is fixed during simulations

ture, the motion of phase point among basins. First of all, we
note that there are two types of time scales for the many-
particle systems, i.e., recurrence time and relaxation time.

One is the Poincareecurrence timg27]. For the system The shift-map description is based on the facts that the po-
with a fixedNd and finite volume of" space, the phase point tentjal surface has many basins whose numbers are larger
returns to near the initial point after a certain time. The exX+tnan 1 and that it is divided into the basins without overlap.
pression for the recurrence timg,,, averaged over the re- By expressing Eq(6) in terms of the series of potential
peated recurrence of the single trajectory was formulated bynergy (denoted byV;) at the local minimum of the basin

Smolukhovsky[28]. For systems of mixing type, the recur- instead ofn, , we have another Bernoulli-like shift map,
rence time becomes proportional to the volume of the phase

space,r...,~e’", where # depends on the resolution of the
measurement for our observation. For the macroscopic sys-
tem with largeN, the recurrence time becomes very large.
Boltzmann[29] used this to explain why there is no occur- This description clarifies the correspondence between the tra-
rence of reversibility of the dynamics under our observationjectory and the potential surface. The shift-map description is
time. The other time scale is the relaxation time after whichillustrated in Fig. 1. The trajectory is generated by the shift
the ensemble of trajectories tends to be approximately unimapV;, ;= ¢V;. In this figure, the trajectory is indicated by
formly distributed over the availablE space. It was explic- a bold line. The trajectory is expressed by a series of
ity estimated by Krylov[7] for the simple model of the {...,V;,V,,V3,V3,V4,V5,V5,Vs,...}. The symbols(x) on
perfect gas to be.,=mL?/4h, whereh is the Planck con- the trajectory correspond tp=t,+iA. The second method
stant andL the linear size of the system. This model has awill be used hereafter.

time unit:  A,=0.01{I%¢,/m}.

Ill. LANDSCAPE DYNAMICS

A. Two time scales and observation time

Ni+1=dn;.

(6)

Vii1= V. (7)
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Thec(T) measures the number of basins over which a single
particle crosses during the unit tim . Note thatc(T) is
intensive whiles(t) is extensive. For the system bf=108,
¢(T) is numerically calculated as

—2.16T

c(M=¢o5 ©)

582°

The wandering property is clearly seen by examining the
property averaged over a long time interval, as shown in
Figs. 5a)-5(c). In theseV; . ; is plotted as a function of the
precedingV;’s. TheV;, ’s are distributed randomly around
the line V, . ;=V;, implying that the phase point wanders
without converging toward a definite value. The points ap-
pearing on the diagonals mean that the phase point stays in
the same basin at timésandt;. ;.

2. Type 2 (asymmetric motion and wandering)

For intermediate kinetic energy, the behavior of the phase
point for the time intervat<z, is similar to that of type 1.
The s(t) andc(T) are precisely the same as those given in
Egs.(8) and(9). The dynamics proceed toward lowér; the
kinetic energyT increases with time. This motion, hereafter,
is calledasymmetrianotion. The asymmetric motion occurs
for both types 2 and 3, and is also a process of generating
heat. The configuration of the particles becomes ordered as
the asymmetric motion proceeds. The wandering ceases after
a long time elapses for the finité, as seen in Fig.(®). This
ceasing timer, depends on both the system sike and
T: 7(N,T). The simulations show that,(N,T) increases
gradually with N and becomes rapidly shorter &8s de-

FIG. 4. Three types of motion among basins, depending uporreases. The magnitude of the largest Lyapunov exponent,

the quantityT in descending order. All types of motion are chaotic.
The trajectory{p;,(t),dj.(t)} is described by series &f;, as de-
scribed in Eq(7). V; is the potential energy at the local minimum
of the basin, defined by the relatiéh=V[q;,]/3dN (V[q;,] is the
total potential energy The unit of the horizontal axis is the time
unit A, (=0.01y{1%€,/m}), and that of the vertical axis is the en-
ergy unite [in Eq. (2)].

C. Three types of motion among basins
Let us examine the motion of the phase point which i

measured for the finite time interval, becomes smaller as the
asymmetric motion proceeds; this magnitude in the final
state is roughly two-thirds of that in the initial state.

The asymmetric motion is irreversibldl] since it is cha-
otic. However, the irreversible motion is not always asym-
metric since irreversible behavior occurs even for the motion
of type 1.

3. Type 3 (intermittency and asymmetric motion)

s For lower kinetic energy, the wandering property is

initially in a certain random configuration. The motion of strongly suppressed. The phase point assumes the different
phase point starting from ordered configurations is a proces¢,;’s intermittently [Fig. 4(c)]. As T decreases, the time in-

of going from the initial ordered configuration to the final

terval m; for which the phase point stays in a sindle be-

state observed for random configurations. The final states ammes rapidly longer; it dependence remains unknown
the same, regardless of the type of initial configurationbecause of the strong dependence of the trajedfoitial

whether ordered or random. The motion among basins

isondition). This type of motion is also asymmetric motion.

classified[30,6] into three types, depending upon the quan-The dynamical behavior of this type depends strongly on the

tity T in descending order of kinetic enerd¥igs. 4a)—

initial conditions, which were discussed in the last section.

4(c)]. All types of motion are chaotic, as seen from the factThe magnitude of the largest Lyapunov exponent, which is

that the largest Lyapunov exponents are positive.

1. Type 1 (wandering)

For higher kinetic energy, the phase point wanders fro

basin to basin and has no tendency to cease wandering. The
numbers(t) of the basins on which the phase point passes

during time intervalk is scaled 10] by

s(t)=Nc(T)t. 8

measured for the finite time interval, behaves similar to that

for type 2.
In the next section we discuss the dynamical origin of the
pSymmetric motion of the phase point.

IV. ASYMMETRIC MOTION

A. Two time scales

Why does asymmetric motion occur for types 2 and 3 but
not for type 1? As mentioned previously, our observation
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Type 1 one basin for a long time before the subsequent transition to

Vin — other basins; the other is the opposite case where it passes
over each basin within a very short time interval.

. For the former case, the particles frequently change their
- ' momenta in the basin so that each particle takes various val-
* . ues of momentum. Consequently, the sojourn t{wreprob-
’;‘? e ability) in which the phase point stays in the domain
o
g
<)

St I1;,dq;, of the basin is giverf31] by the number of mi-
o e crostates, i.e., the volume fractidd in the I' space.  is
calculated as
Hjadqja
(@) QIW I1dp;,6(e—H[Pjs.djel),

=

‘/;_'.1 :Qp(e_v[qja])njadqjai (10)

where
W Qp(e=V[0j4])=C(N,d)(e—V[q; DN¥*" L. (1)

e is the total energy of the system, add..) in Eq.(10) is the
Dirac function. The mixing property is assumed to obtain Eq.
(10); the particles frequently exchange their kinetic energies.
The prefactorC(N,d) on the right-hand side of Eq11)
R depends uponl andN but not upone andq;, . Integrating
(b) Ed. (10) with respect to the coordinatg, under the condi-
) tion O<e—V[q;,] obtains the total volume of the availaldle
Type 3 Cnergy (€o space, from which we get the Boltzmann entropy defined in
Via statistical physics. In comparing the phase space volume at
’ the potential energy[q;,] with that atV[q;,] +AV, AV is
assumed to be smaller tha-V[q;,] at aboutAV=0(1).
.. The volume ratioy is given from Eq.(11) by
. Qp(e_v[qja]_AV)
. 7T (e~ ViaD)
A (Ndi2)—1
e
G_V[qja]

(<) V; By using the relatiore—V/[q;,] =NdT/2 [see Eq(4) for the
energy (€o) definition of T] and assuming ¥€Nd, we have the well
known canonical measure for the coordinate space,

FIG. 5. (a) A plot of V;, 4 as a function of the preceding; , ex;{ AV
’y:

=

(12)

which is obtained from Fig.@) V; is the potential energy at the T (13

local minimum of the basin, satisfying the relatignp=V([q;,]/3dN T

(V[q;,] is the total potential energyThe unit of the horizontal axis  The phase space volume in thespace becomes larger as the
is the same as that of the vertical axis but arbitrary, ,'s are potential energW[q]‘a] decreases. In other words, the prob-
distributed randomly around the liné_ ;=V;, showing that the  apility of the phase point moving in the direction of lower
phase point wanders without converging toward the definite valuesyotential energy is larger than that in the opposite direction.
(b) A plot of Vi, as a function of the preceding , similar to(a),  Thys, we might expect the occurrence of asymmetric motion
which is obtained from Fig. ). The number of dots below the line i, this casdFig. 6). The crucial point of this argument is that
Vi1=V; is larger than that above the line, showing the occurrencep e cangnjcal probabilistic measure is formed transiently un-
of the asymmetric motion. The.re are also some dots above the IinleeSS the phase point moves over the whole region oflthe
Vi+1=Vi, showing the wandering propertc) A plot of V; ., as a space. Achievement to the true equilibrium state is not nec-

function of the precediny; , similar to(a), which is obtained from : - .
Fig. 4c). The number of dots below the ling , =V, is over- essary. Ergodic assumption is expected to hold for the

=
whelmingly larger than that above the line, showing that the tran-Trelax Tob- .
sition is glgmingnt for the casé . <V, g On the other hand, for the latter case the phase point
1+ [

passes through a given basin without significantly changing
time is much less than the recurrence time;,<7., FOr  the momenta of the particles. Therefore, the sojourn time
the opposite case.., <7, N0 asymmetric motion occurs where the phase point stays in the domhip,dq;, of the
for any Hamiltonian systems due to the the Poinaaur-  basin is no longer given by Eq10). There are two cases
rence phenomenon. where the sojourn time is given by EQLO): the first is the

In order to address this question, let us consider two exease we deal with, as discussed above; the other is the case
treme cases: one is the case where the phase point staysvitiere relaxation to the equilibrium state is accomplished. In
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3 Two trajectories described by the $et,(t),q;,(t)} and the
set{p],(1),q;,(t)} are close to each other at the initial time
t=0. The(:--) stands for the average over the ensemble of
the trajectories starting from the small regianin the I
space. Consequently, these quantities also depend on the ini-
tial conditions. The suffixep, q, p’, andqg’ of the diffusion
lengths defined by Eq$15) and(16) are ambiguous because
they are averaged over the ensemble of trajectories
1Pja(1),0;,(1)}, and so have no dependence on each trajec-

Tdg' tory. However, the addition of these suffixes help to get the
: vigl following triangle inequalities. First we consider a diffusion
length analogous to those in Ed45) and(16) for two tra-
FIG. 6. Occurrence of the asymmetric motion. The horizontaljectories[the quantities without brackets in Eq&5) and

axis describes the configuration space, while the vertical axis showg1 6)], which results in the triangle inequalities analogous to

the  potential ~ energy. ~ The  following  inequality those in Eqs(17) and(18) for those trajectories. Next, we

holds: Qp(e=V[a7,]) <Qp(e—VIaj,]) whenV[aj,]>V[aj.].  average the resultant inequalities over the ensemble of the

Here,{),(e—V[a;,]) is the volume of" space when the volume of yyaiectories starting from regiom to get the following in-
the coordinate space is equal to unity is the total energy of the equalities:

Hamiltonian. The probability of the phase point occupying a unit
volume of the coordinate space may be proportional to Fo o (D) 2<ag(t)2+agy (t)2+14 4/ (0)2, (17)
Q,(e—VI[aj,]). The probability of the phase point moving in the a.d a q a.d
direction of lowering the potential energy is larger than that in the 2 2 2 2
S r,or(H)*==ay(t)*+ay (t)+r,,(0)“. 18
opposite direction. Thus, we expect that the motion is unidirectional p.p (D) p(D) pr(V) p.p'(0) (18
to lower basins in energy, i.e., the occurrence of the asymme’[ritﬁ-og(_lth(_:‘r with these. we also have
motion. '

Fogpra (D=<apg(D)2+ay ¢ ()2+1p o o (0)%

the latter case, relaxation time must be much shorter than the (19)
observation time. However, this contradicts our assumption
made in Sec. Il A. The numerical calculations performed for the systems of

The arguments above suggest that there are two distin®l=32, 108, 256, and 864 show that the absolute and relative
time scales, depending on whether or not the probabilisticliffusions have the following properties:

measure is formed transiently. One is the time segledur- (pl) For larget,

ing which mixing is accomplished in the momentum space.

The other is7,, during which the phase point passes though aq(t)2= %Dq(T)t, (20

a given basin. Before evaluating the two time scales, we

examine the behavior of the dynamical variafgies andg whereD(T) is the diffusion length. _

in the next subsection. (p2) All of the relative diffusion lengths increase expo-

nentially with time for short [32] as

B. Absolute and relative diffusions: Existence of the crossover

2 202\t
time 7, Mp.aip.q (D= pgpr g/ (0)7€7,

(22)
The absolute and relative diffusiorss, ,(t) andr, 4(t), rp’p,(t)zzrp’p,(o)zezxrt’ rq’q,(t)Zzrq'q,(0)2e2>\rt,
are, respectively, defined by
where\, is the largest Lyapunov exponent.

ap q(1)?=ay(t)?+a4(t)?, (p3) 1, (1) saturates at a certain time.

(14)  (p1l) is the property seen for normal liquids. p%) is what

Mogp g (D=1 ppr (D241 4 (D)2, is expected because all motions are chaotic, as seen in Sec.

I C. (p3) is concluded from the following inequality:
where
1
, 1 > , rp,p,(t)2<<m 12 {p;a(1)2+ pj'a(t)2}> +1pp(0)2,
ay(t) =— (1) —Pja(0 , @

(D" =Ng < Pja(t) = Pjua(0) 22

(15)

2
0ja(t) —dj4(0) <<a (eK+e.’<)> +1pp(0)2=2T+r, ,1(0)2

(23

1
aq(t)’ =15 <2

ja

2>'

2> The upper boundednessg;"pr(t)2 comes from the fact that

' the Hamiltonian has the monotonically increas{ggadrati¢
(16)  function of the variablep;, and from the fact that the ki-

> netic energy is positive while the potential energy is lower

pja(t) - pj,a(t)

qja(t)—qj’a(t) 2 bounded: —o<V[(q;,]/N. It follows from (p2) and (3)

1
rp'p’(t)zz’\'_d< o
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that there exists a crossover timg of rp’pr(t)2 between the initial indeterminacy. In the notations used here,
short and long times such that In(\,/rg) is the largest Lyapunov exponen is yT/2, and
) 5 ot Apgisry o (0).
Mopr(D=rp o (0)%e"  for Ost<r, (24
Mop (D)2=2T+r, 1 (0)2 for 7.<t. (25) C. Intensity of motion

) ) _ ) We are now in a position to explore the dynamical origin
From these, we easily obtain the timgat whichr (t)? ; ; ; ;
' p.p of the asymmetric motion. To this end, we introduce a new

reaches its upper-bounded value: notion, the intensity of motiofi34] in phase space, to de-
scribe the dynamical competition between the motion of the
o= 1 In 2T ” (26) phase point in the momentum space and that in the coordi-
©20(T) Mopr(0)° nate space. The degree of intensity of motion is measured by
[See Eq(16) for the definition ofr p'p/(O)Z]. Here, we explic- (T
itly express thel dependence of the largest Lyapunov expo- o(T)= o(T)’ (30

nent, A, =\ (T). This expression means that thg is the
time scale in which the initial indeterminacy of the variables
Pj. increases to coincide with the basin size on the momenwhere ther,(T) and 7(T), which were introduced in Sec.
tum space. In obtaining the equality in H6), we ignored |V A, denote, respectively, the time scale characterizing the
the small termr, ,/(0)* on the right-hand side of Eq25),  mixing of the phase point in the momentum space, and the
instead using for comparison the remaining teri [Zee time scale of the diffusion of the phase point in the coordi-
Sec. V for the evaluation af,, ,(0)%]. nate space. Here we explicitly representedTrdependence

A question arises: What does the existence,ahean? In  of the quantities appearing for the expression. TH&)
order to address this question, we consider two trajectoriesust be intensive. The intensity of motion has the following
whose momenta are, respectively, given by the §gts(t)}  meaning. Foro(T)<1, relaxation occurs faster in the mo-
and{pj,(t)}. Supposgp;j,(t)} are very close t¢p/,(t)} at  mentum space than in the coordinate space. The phase point
time t=0. For shortt, the difference between the two sets is takes the various states inside the momentum space, forming
small, and so the two sets closely match. As time goes ortransiently the canonical measure given in EkB). In other
however, the difference between them increases, and resuligords, the kinetic energy plays a role lasat On the other
in vanishing the correlation at.. Then, two sets behave hand, foro(T)>1, the phase point transmits between the
independently. In other words, trajectories become Markovbasins of the potential surface before relaxation with respect
ian in the momentum spa¢83]. Thus, 7, is the signature of to the momentum space.
trajectories becoming Markovian in the momentum space be- Our assertion is as follows: asymmetric motion takes

yond 7. The 7. is also the crossover time such that place in the case(T) <1, and wandering motion takes place
in the caseo(T)>1. The transition point determining
Fqq(1)?=rqq(0)2e? for Ost<r, (27)  whether or not asymmetric motion takes place is given by
the boundaryo(T*)=1.
rq'q,(t)ZZrq‘q,(o)2e2kr7c+ Dy(T)(t—7) for 7o<t. Let us express the(T) in terms of the dynamical quan-

(28)  tities obtained in previous sections. We begin with It is
evident from arguments given in Sec. IV B that can be
The monotonic increase mqur(t)z for larget (>7.) is sig- regarded ag,. Next we considerr,. The mean size of a
nificant sincerp,pr(t)2 saturates at a certain time. It is inter- basin is denoted b, or L: the capital lettel, describes
esting to note from numerical calculations that when thethe size of the basins in tHéspace, and the lower case letter
Markovian process occurs in the momentum space, the dil-, describes the size of the basins normalized for one degree
fusion lengths in the coordinate space sets obey the norma(} freedom of the systemd;, and |, satisfy the relation
diffusion law. Lz=NdI3. 7, is the time scale where the ensemble of the
It is noteworthy that the expression for the crossover timgphase points pass over the basin. From this, we have
7. given here is equivalent to the relaxation time with respectL §= NdDy(T) 74, or
to momenta in thd" space estimated by Krylow]. He es-
timated the relaxation time of the system explicitly for the
case of a perfect gas, based on the instability of the trajecto- Lé 1
ries. By applying the arguments analogous to those made a= | Nd Dq(T)’
here concerning the total momentum, he obtained the relax-

ation time with respect to momenta except for the negligible Ig
factor, = Dy(T)” (31
32 I 27 og
kYo N Tro) | Apo/po) | @) Erom this expression, it is seen thatis the time scale where
rTo Po/Po

one patrticle jumps between two neighboring basins, the dis-
where InQ,/ro) describes the deviation rate of the total mo-tance of which is given by,. By inserting Egs(31) and
mentum from the initial valuey, is the momentum, andp,  (26) into (30), we have
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4.0 - . -

(1) Dy [ 2T - .
_<E 2)\r(_|_) n rlzj’p/(O)) . ( ) e

The o(T) given here becomes intensive, as required. It is,
however, difficult to evaluate the size of the bakjrin this
expression within the limits of our computer power. Let us
rewrite this expression, based on the phenomenological ar-
guments as follows.

As seen abover, describes the time interval in which the
particle jumps between two neighboring basins, the distance
of which is given byl,. Recall that the number of basins
over which the phase point passes during the time intdrval
is given by Eq.(8). The system consists of thé particles.
During the time intervalr, , some particles stay in the basin ..
and the others jump to the next basin. Therefore, we may .
obtain the equatiors(7,)=N in (8), indicating that during .
the time intervalr, the N particles may jump between two 0.0
neighboring basins. This seems to be supported by the fact
that the diffusion constard ,(T) is given by the Arrhenius
law, as will be given latefEqgs. (36) and (39)]. We have

20 A L

largest Lyapunov exponent

0.0 0.2 0.4 0.6 0.8 1.0

s(74)=Nc(T) 74=N, from which T
1 FIG. 7. The largest Lyapunov exponent as a functioff pofal-
Tq= _C(T) . (33 culated for the LJ system ¢=108 andd=3 for the random con-
figurations of the basins. The unit of the horizontal axis is the en-
By combining Eqs(33) and (26), we have ergy unite [appearing in Eq(2)], while that of the vertical axis is
1/A,, whereA, is the time unit; A,=0.01,{I%¢,/m}. The magni-
c(T) 2T tude of the largest Lyapunov exponents is insensitive to the system
o(T)= In 7] |- (34)  sizeN:; the result forN=108 is identical to thaN=256 or 500.
2N\ (T) Mo, (0)

The o(T) obtained here is also the intensive. Furthermore, a@symmetric motion appears long after the phase point wan-
will be seen later, the calculatel dependences db ,(T) ders among the various basins just below the transition point.
and c(T) are identical within the error of the simulations, Therefore, we can use the quantitigl) and A (T) aver-
indicating that theo(T) in Eq. (34) is the sameT depen- ~aged over along time to evaluate the transition pditwe
dence as that in Eq26). This suggests the validity of our again denote such quantities by the same notat¢hi} and
phenomenological arguments made above. The quantities(T)-

D4(T) andc(T) in Eq. (34) can be calculated with the re- ~ Let us compare the expression in E&4) with the results
sults of computer simulations. Thus, we can compare th@f computer simulations for the Lennard-Jones system of
transition point ofo(T*)=1 with the simulation results. N=108. The interaction potential is given in EG). The

In the next section we evaluate our assertion by carryingalculated\(T) andD4(T) are shown in Figs. 7 and 8, as a
out numerical calculations. Before proceeding, it should bdunction of T. The calculated\ (T), the largest Lyapunov
noted that the size of a basin in the coordinate spagecan ~ €xponent, is abous,(T)~5.8T for 0<T<0.75, while for
be known. By comparing Eq34) with Eq. (32), we have the 0.4<T, the diffusion constanD(T) is described by the

size of the basin, Arrhenius law,
» Dg(M L2=Nd Dq(T) a5 Dq(T)zo_lzﬁe*Z.ISIT. (36)
= gm e N em ) (39

The calculatedc(T) has been already given in E¢P):
This expression for the basin size is based on the phenone(T)=\Te 2%7/5.82. By inserting the calculateB (T)

enological arguments. andc(T) into Eq. (35), the sizel 3 of the basin is estimated
to be 0.698%%": the weakT dependence of the estimated
V. RESULTS OF COMPUTER SIMULATIONS size is regarded as negligible within the error of the computer
simulations. From this, we have the reasonable basin size
A. Lennard-Jones systems: Case dfl =108 1,~0.8354, which is close to the distante0.77 between

The quantitiesc(T) and \,(T) in the expression in Eq. the nearest neighboring particles for the fcc structure.
(34) are not averaged over a long time, as seen from our Let us evaluate the transition poift satisfying the equa-
arguments. The dynamical behavior near the transition poirtion o(T*)=1. The value of , ,/(0) is necessary to evaluate
determines the transition poifit* of o(T*)=1, so that the o(T) in Eq. (34). However, it is not determined within the



54 HAMILTONIAN SYSTEMS WITH MANY DEGREES CF . .. 4695

0.010 T i

0.005 T 3

Dy(T)

0.000 ' T T T T
0.0 0.4 0.8

T

FIG. 8. The diffusion constar?(T) as a function ofT, calcu-
lated for the LJ system dfil=108 andd=3 for the random con-
figurations. The unit of the horizontal axis is the energy ugit
[appearing in Eg2)], and that of the vertical axis is the length unit
| [appearing in Eq(2)]. The magnitude of the diffusion constant is
insensitive to the system sidg the result folN=108 is identical to
that of N=500 or 864.

framework of classical mechanics. Here, we make the semp

classical ansatz given hy, ,/(0)=h/L, whereL is the sys-

tem size and is the Planck constant. The choice of system

size L reflects less on the value &*. For example, for
system sizeL =1 cm, In(r, ,/(0))=—18.885 064 937 546 1
in our units. Ther, and 7, given in Eqgs.(26) and (33) are

shown in Fig. 9 as a function of. The 7,’s are calculated

1300 1 L

1040

520

260

0.0 0.2 0.4 0.6 08 1.0

FIG. 9. 7, and 7, as a function off for the LJ system oN=108
and d=3. The unit of the horizontal axis is the energy usjt
[appearing in Eq(2)], and that of the vertical axis is the time unit

A, (=0.01/{1%¢,/m}).

for ten initial conditions. 7, depends onl more rapidly
than doesr, . This rapid dependence determines the position
at which the curve of;, crosses that of,. From this figure,
we have the transition point* =0.48.

In order to confirm the validity of our theoretical conclu-
sion, we performed computer simulations for five initial con-
ditions by changingl' to examine whether the asymmetric
motion appears or not. The simulation results determined for
the five initial conditions ard*=0.55,T*=0.55,T*=0.50,
T*=0.50, andT*=0.50. These agree well with our theoreti-
cal resultT*=0.48.

B. Truncated Lennard-Jones system: Case dfil =32

Let us test our assertion for another system, a Lennard-
Jones type where the interaction potential is given by

v(q)=A(q 2-1)e"97% (0<qg<qy),
=0 (do=0), (37

where A=8.805 977 andjp,=1.652 194. The units of time,
energy, length, and mass are assumed to be the same as those
for Ar atoms. This system has been examined by Stillinger
and Webef10]. They have calculated the number of transi-
tions between the basins during 10 000 time steps in their
molecular dynamics. They assumed the time unit
A;=0.001 25, and the system sine=32. By changing the

time unitA; from 0.001 25 to 0.01 and by using the relation
(t)=Nc(T)t, we havec(T) given by

ﬁ —2.163/1'.

¢(M=126.325°

(38)
For this system, we calculated as a function ofT (7, and
74 are plotted in Fig. 10 as a function ®). 7, depends on
T more rapidly than does, . This rapid dependence deter-
mines the position at which the curve gf crosses that of
74- From this figure, we theoretically obtain the transition
point T*=1.6-1.7. Here we used, ,/(0)=h/L, whereh is
the Planck constant and=1 cm. On the other hand, using
the results of the computer simulation performed by Still-
inger and Weber, we hav&*=1.6 [10]. This agrees well
with our theoretical result*=1.6—1.7.

For this system, we also calculated the diffusion constant
Dq(T) to give

ﬁ —2.16/T

Do(T)= 25648

(39

for the region 1.xT=3.0. By inserting this and(T) in Eq.

(38) into Eq. (35, we have a reasonable basin size,

1 3=0.4%%9" or | ,~0.7e%"*", which is close to 0.77, the
distance between the nearest neighboring particles of the fcc
structure. The weal dependence of the estimated size is
regarded as negligible within the error of the computer simu-
lations.

In this section, we have confirmed our assertion that the
T* satisfying theo(T*)=1 in Eq.(34) is the transition point
that determines whether or not asymmetric motion occurs.
The transition points calculated by using the largest
Lyapunov exponents and(T) are in excellent agreement



4696 SHINJO KAZUMASA AND SASADA TOMOHEI 54

notion of intensity of motion in phase space, the degree of
which is measureq byr(T)= Tp(_T)/Tq(T), where_rp(T) .is

the time scale during which mixing is accomplished in the
momentum space, while(T) is the time scale during
which the phase point passes over the given basin. The
asymmetric motion is attributed to the transient formation of
the canonical probabilistic measure. T&€T) is expressed

in terms of the dynamical quantities. Our assertion is con-
firmed by performing the numerical calculations tidt sat-
isfying o(T*)=1 is the transition point of whether or not the
asymmetric motion occurs. For the occurrence of asymmet-
ric motion, the relaxation dynamics in the momentum space
are completed faster than the diffusion dynamics in the co-
ordinate space, causing the dynamics to proceed so as to
increase phase space volufieor entropy for the momen-
tum space. This is the reason why the ordered phase emerges
among many random configurations. The notion of intensity
of motion is expected to help in discovering a generation
0.0 06 12 18 24 3.0 principle of ordered phases of condensed matter out of many
configurations.

1000 L

800

600

400 -

200

T

FIG. 10. 7, and 74 as a function off for the truncated LJ system B. Other properties of type 3
of N=32 andd =3, similar to Fig. 9. The units of the horizontaland ~ The following dynamical properties are observed in addi-

vertical axes are the same as those in Fig. |, was obtained by tion to intermittency and asymmetric motion.

modifying the result by Stillinger and Weber, is calculated here (@ Strong dynamical instability during the intermittent
for N=108; it is found that the magnitude 0‘; is insensitive to the transition. The absolute diffusion |engmq(t) of the phase
numberN of particles. point, grows exponentially with timg,

with the results obtained by performing computer simula- aq(t)zaq(O)e"?‘, (40)

tions for two types of interaction potential. Furthermore, it

was found that the expression for basin size obtained byvhereaq(t) is defined by

applying the phenomenological arguments, which is given in

i in si 1

Eg. (34), yields reasonable basin sizes. aq(t)zzN—d % G0~ Gyl O)[2 1)

VI. CONCLUSIONS AND DISCUSSION

This is defined for the single trajectory, being sensitive to the

trajectory (the initial conditior). The intermittent transition
We have studied the dynamical properties of Hamiltonianoccurs fast. The instability ratef is a few or several times

systems having a many-basin structure. The many-basigreater than the largest Lyapunov exponent for the motion of

structure of the potential surface produces a variety of phasghase point staying within a basin. Tb.g(t)2 grows expo-

dynamics, i.e., the motion among basins and the motiomentially with time during the intermittent transition, which

within a basin. The motion within a basin has been studieg¢hould be in contrast to that for the normal diffusion in

with two types of the particle configurations, i.e., orderedwhich it increases linearly with time. The absolute diffusion

and random. For the ordered configurations, the collapse déngth during the intermittent transition is shown in Fig. 11

the KAM torus occurs at the finite kinetic ener@y. Forthe as a function of timet. The intermittency occurs from

sufficiently small kinetic energy € T<T§, the phase point t=10000 to 10 250. The exponential growthagf,(t) ont

is trapped on the KAM torus corresponding to the fcc or-in Fig. 11(a) is ambiguous since the momentum paui(t),

dered configuration. This finite stochastic transition has beerapidly oscillates, as shown in Fig. (). By excluding this

also found for one- or two-dimensional systems with singlerapidly oscillating part froma,, 4(t), the exponential depen-

basin structures such as the Fermi-Pasta-Ulam model, trdence becomes clear, as shown in Figicl1

Lennard-Jones model, and so on. On the other hand, for ran- (b) Many-transition-path formation. The phase points

dom configurations, stochasticity occurs for even sufficientlywith two different initial conditions,{p;(0),q;(0)} and

small kinetic energy. Due to the fact that most basins havép; (0),q; (0)}, set in a given basin follow different transi-

random configurations, the chaotic sea may prevail ovetion paths. This property means that there are many transi-

most of the availablé’ space. From this, it is suggested thattion paths starting from the given basin. The dynamics fol-

the phase point may move around the various basins. lows the different paths, indicating the formation of a many-
The motion of phase point among basins is classified intdransition path.

three types of motions, depending upon the magnitude of The following three propertietc), (d), and(e) are seen

kinetic energy. These are further classified according tdrom Fig. 12.

whether or not asymmetric motion occurs. The dynamic ori- (c) Easy-path formation. A few particles move along the

gin of the asymmetric motion is clarified by introducing the line topology in the three-dimensional real space; only these

A. Summary
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(d) Cascade collapse: the other remaining particles follow
the motion of a few particles. This implies that the transition
. - occurs between two basins whose spatial distance is remote.

A change of particle configuration is caused by the inter-
mittent transition occurring at abowt=3800 in the figure.
The configuration of particles in the cube looked at from the
y axis is indicated. The coordinates of particles are given by
{Xi ,¥;,z}. The configuratior{at the local minimum before
the intermittent transition is indicated by particles shown by
green circles, while that after the intermittent transition is
indicated by particles shown by red circles. The red lines
indicate a change of coordinate for particles during intermit-
tent transition. The largéor smal) change is indicated by
the bold (or solid) red lines. The bold lines form the line
topology, suggesting an easy-path formation. By studying
the time-dependent diffusion length of each particle, it is
found that the intermittent transition occurs as follows: par-
ticles 81 and 82 move first. Particles 9 and 26 move; particle
9 moves to fill a hole left after the movement of 81, and
particle 26 is pushed up by particle 82. Subsequently, par-
ticles 61 and 75 move. Finally, the other remaining particles
(b) relax into the next stable configuration. Just a few particles
move before transition, suggesting that the potential barrier
is finite, irrelevant to the system size, and cascade collapse.
The other remaining particles follow the motion of these
particles, suggesting that there arises a transition between
two stable configurations whose distance is remote. This,
however, does not imply that a few particles trigger transi-
tion. The other particles can be considered to prepare their
local motion. For these motions, it seems difficult or even
meaningless to answer the question of what triggers the mo-
tion. The transition motion of type 3 is different from the
Arnol'd diffusion and the induction phenomenon because
type 3 is chaotic.
© There are other types of particle dynamics during inter-
' T T mittent transition. For example, two particles move at the
9890 10130 10370 same time before the other particles follow. It is often ob-

time served that a few particles move before the others follow
them.

FIG. 11. (a) Logarithm of the absolute diffusion length during (e) Complex connectivity of transition paths.
the intermittent transition foN=108. The unit of the horizontal The motion of type 3 relates to the complex connectivity
axis is the time unitA, (=0.01y{I%¢;/m}), and the unit of the  of the transition path between basins. The phase point as-
vertical axis is obtained by using the length unfappearing in Eq.  sumes the valu®; intermittently during transition. The po-
(2)] but is arbitrary. The intermittent transition occurs from tential energy is shown in Fig. 18 along the shortest path
=10 000 to 10 250. The phase point stays in one local minimumstrajght ling connecting two local minima of basins be-
for t<10 000, and stays in another local minimum for 10250 wyeen which the intermittent transition occurs. The broken
The absolute diffusion lengths are defined bg,q()°  |ing indicates the potential energy along this line. The bold
=ap(1)"+aq(1)", whereay(t)“is the momentum part defined by  jine jngicates which basin the spatial point along the shortest
ap(1)°=Zi[pi(t) —pi(0)| /3Nd, anday(t)” the coordinate part, de- ) phojongs to. It is noted that sondgs are different from
fined by ag(t)?=2;|q;(t) — q;(0)|%/3Nd. From this figure, the ex- b gs fo. . . .

7 “q ! i : . those of the initial and final basins. This means that some
ponential growth ofa, 4(t) is ambiguous(b) Logarithm of mo- basi . o . .

AR . . o asins intersect between the initial and final basins. The
mentum dlfflusmln length, a,(t)), rgpldly oscillates and is §|m|lar h ic land fth ial f is sh in Ei
to (a). The time intervals observed in the top and center figures ar chematic andscape o the potential sur ace I1s snown in Fig.

3(b). The intermittency bypasses the basins’ intersecting.

the same but different from that in the bottom figui®.Logarithm e "
of a coordinate diffusion length (aq(t)). The function of Ifag(t)) The complex connectivity of the transition path causes the

is linear betweert=10 000 and 10 250, showing the exponential iNtermittency. This is in contrast to the motions of types 1
dependence dd,(t). The dotted line is a guide for the eye. and 2; no other basin intersects with the initial and final

basins between which the motion of the phase point occurs
seem to move before the transition occurs. This implies thatctually. One of the indices used to measure the complexity
the potential barrier is finite, being irrelevant to the systemof the transition paths is the number of other basins intersect-
size. ing between the initial and final basins.

In(apq(t))

In(ap(?))

9000 9800 10600
time

In(ay(t))
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L)
[#2]

L

i4b.

FIG. 12. A change in particle configuration caused by the intermittent transition occurring at &88@0 in Fig. 4c) for N=108. The
configuration of particles in the cube viewed from theaxis is indicated. The coordinates of particles are given{*qyy;,z}. The
configuration(at the local minimur before intermittent transition is indicated by particles shown by green circles, while that after the
intermittent transition is indicated by particles shown by red circles. The red lines indicate change in the coordinates of particles during
intermittent transition. The largéor smal) change is indicated by the boldr solid) red lines. The bold lines form the line topology,
suggesting an easy-path formation. By studying the time-dependent diffusion length of each patrticle, it has been found that the intermittent
transition occurs as follows: particles 81 and 82 move first. Particles 9 and 26 then move; particle 9 moves to fill a hole left after the
movement of 81, and particle 26 is pushed up by particle 82. Subsequently, particles 61 and 75 move. Finally, the other remaining particles
relax into the next stable configuration. This analysis implies some properties: Localness: just a few particles move before transition,
suggesting that the potential barrier is finite and unrelated to the system size; Cascade collapse: the other remaining particles follow the
motion of a few particles, suggesting that there is a transition between two transiently stable configurations whose distance is remote.

The intermittent transitions are obsenf&®,36 for many  semble of trajectories, whereas the diffusion is concerned
dissipative and conservative systems with many degrees a¥ith a single trajectory. Why does this asymmetry appear?
freedom, similar to type 3. (3) The asymmetric motion has been discussed on the
basis of the many-basin structure. The celestial systems or
Coulombic systems may have no many-basin structure. Are
our arguments for the asymmetric motion valid for these

The major problems remaining in this work are listed Systems? How can we expand our arguments to these sys-
here: tems?

(1) For investigating the asymmetric motion, we used the
concept of ensemble of the trajectories for the mixing dy- ACKNOWLEDGMENTS

namics in the momentum space. This use challenges a pic- We would like to thank S. Tasaki, K. lkeda, K. Kaneko,

ture of the phase point moving in the phase space. ) S ) ) .
(2) There is an asymmetry that causes the time scajes and P. Davis for their stimulating discussions.

and, to be incorporated into the expressionodfl). 7, is

concerned with the mixing dynamics in the momentum
space, whiler is concerned with the diffusion dynamics in ~ The equations of motion for{p?a(ti),q?a(ti)} and
the coordinate space. The mixing is concerned with the enfp;,(t;),0;.(t)} (j=1,...N; a=1,...d) at timet;=ty+iA,

C. Directions for future work

APPENDIX
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7.2 Qjalti+1) =0ja(t) +APja(ti),
_ Pialtiv) =Pia(t)+A¢ D aegltivn)fjaks,  (A2)
£ 74 1 ; 4 k(#1)B
g \ where
53 L 5\
g - 4 2 10
s o uladti)]
& M Jekp 5Q?a(ti+1)5qck)ﬁ(ti+1)
o[ ar,(tis1)]
-7.8 | (a) fiakg=— 2 : (A3)
: 39 a(ti+1) d0ka(ti+ 1)
Distance between local minimum
points of two basins (a and b) i . i .
The equation for the time evolution of the quantities

{8pj(ti),80;,(t;)} along the trajectory{pf,(t;),af.(t)},
where 5pja(ti):pja(ti)_p?a(ti) and 9;,(tj) =aj.(t)
—q{,(t;), 1s obtained from Eqs(A 1) and (A 2) by assum-
ing that op;,(t;) and dq;,(t;) are sufficiently small:

00 a(ti+1) = 60j(ti) + Adpja(ti), (A4)

3Pja(tis1) = O0ja(t) +A¢ > 8Gkp(tis1) g
k(#j)B

=8P (t) +A2 t)f0
Pialt) tk(gj)ﬁ Pra(t) s

Illustration of landscape of the potential energy
between two basins (a and b) corresponding to )0
the above figure, similar to Fig.1 + Atk(#:zj)ﬁ qkﬁ(tl )fJ akp: (AS)

FIG. 13. (a) Plot of the potential energy on the shortest path Here, .We u:zd E%Ai)sto get the flnal equ%tlcl).n Irl]l EgAS).
connecting the local minima of two basins between which phasézquatlons( ) and (A5) are rewritten symbolically as

transition actually occurs for the LJ systemM#108, indicated by
the broken line. The bold lines indicate which basin the spatial point OPjalti+1) — G (1 ).aC.(t 1 )] OPjalti)
along the shortest path belongs to. There are sdji'ewhich are 89;4(ti+1) Pialli+1) djalti+1 89;,4(t) )

different from those of the initial and final basins. This means that
there exist some basins intersecting between the initial and final
basins. Tht_a length unit_ of the_ hgrizontal axis is Faken as_arb_itraryAs seen from Eqs(A4) and(A5), the Jacobian of the trans-
and the unit of the vertical axis is the energy u&jy_t[appearlng in  formation matrix from{5pja(ti)a5qj'a(ti)} to {5pja(ti+l)!
Eqg. (2)]. (b) Complex connectivity of the transition path among 5qja(ti+l)} is equal to unity, ensuring the area preserving
basins for the motion of type 3, corresponding to the intermitten . 0 (4 0 (4
transition in(a). Similar to Fig. 1, the schematic landscape of thetpigsv?rr]t):ag ttr:]:|;hlétstTa§GlErﬁ)on(2;%’nqér‘]"t(g'f*tlr)é' ti-rq:aeevo-
many-dimensional potential surfa®§q;,] is shown. The intermit- ) - ! 9 yap P )

Y P Gia tion {8p;,(t),5q:,(t)} along the trajectory{p? (t;)
tency bypasses the intersecting basins. The complex connectivity (IJ'fIO e lI) T l‘a ! he limiti U6 l‘; 'h’
the transition path causes the intermittency. This is in contrast to thd (ti_)}’ IS © ta_lne_ as t e limiting valué—<) of the
case of motions of types 1 and 2; no other basin with the initial and1U@Ntity (i), which is defined by

final basins(indicated by the shaded regiobetween which the ,
motion of phase point actually occurs. . 1
M= 55 2 In THGIPfL(ts 1), Gu(tn )]

ja

wheret, is the initial time and, is the time step, is given by 0 0
the following Euler equation: XGLPjatnr1) djatnr)]}- (A7)

Here, we used the notatigrto express the time. The symbol
0 _ 0 0 Tr[x] means the trace of the matniks and the suffiX on the
Pt =07, () AP, (L), . ; .
Gyl ti+2) = Gja(t) + Apja(t) left shoulder of the matrix stands for its transpose. As dis-
cussed in the text, there is a possibility that the phase point
may escape from the basin during a long run and for a larger
0 _ 0 0 0 kinetic energy. The growth rates of the time evolution of
a(tiz)=pi,(t)+A tivO)f g (AL , ) ; X -
Pialti+1) =Pjalti) tk(;j)ﬁ Apti+ D) fjaipr (AD) the trajectories are calculated for the time interval within



4700 SHINJO KAZUMASA AND SASADA TOMOHEI 54

which the phase point stays in the single basin, i.e., for th@umber is Nd. The equation of motion they obey is given
typical i <200, and are averaged over the many different traby Eq. (A 6). They become nonorthonormalized as the dy-
jectories starting with phase poin{p Joa(ti),q?a(ti)} con-  namics proceed. Then a new set of orthonormal vectors are
fined in the single basin. obtained by using Schmidt’s orthogonalization technique. By
The Lyapunov spectra can be obtained as the growth ratassing this procedure repeatedly, we have the Lyapunov ex-

of the orthonormal vectors spanned in thespace, whose ponents averaged along the traject{)nfa(ti),q?a(ti)}.

[1] J. C. Phillips, Phys. Rev. B6, 8542(1992.

[2] J. C. Langer, Phys. Todal0, 24 (1992.

[3] P. W. AndersonConcepts in SolidéW. Benjamin, Reading,
MA, 1963).

[4] S. Aubry, J. Phys(Pari9 44, 147 (1983.

[5] F. H. Stillinger and T. A. Weber, Phys. Rev.25, 978(1982.

[6] Shinjo Kazumasa, Phys. Rev. 8, 9167 (1989; J. Chem.
Phys.90, 6627(1989.

[7] N. S. Krylov, in Works on the Foundations of Statistical Phys-
ics (Princeton University Press, Princeton, NJ, 1979®. 193—
206.

[8] F. G. Amar and R. S. Berry, J. Chem. Ph§, 5943(1986.

[9] J. Jellinek, Adv. Chem. Phyg0, 75 (1988.

[10] F. H. Stillinger and T. A. Weber, Phys. Rev. B8, 2408
(1983; Science225, 983(1984.

[11] L. Verlet, Phys. Rev159 98 (1967).

[12] P. Bocchieri, Phys. Rev. &, 2013(1970.

[13] M. C. Carotta, C. Ferrario, G. LoVecchio, and L. Galgani,
Phys. Rev. Al7, 786 (1978.

[14] M. Casartelli, E. Diana, L. Galgani, and A. Scotti, Phys. Rev.
A 13, 1921(1976.

[15] M. Pelti, Phys. Rev. 7, 828(1993.

[16] G. Benettin, inProceedings of the International School of
Physics, “Enrico Fermi,” Course XCVII, edited by G. Cic-
cotti and W. Hoover(North-Holland, Amsterdam, 1988p.
15.

[17] G. Benettin, Prog. Theor. Phys. Suppl6, 207 (1994).

[18] B. P. Wood, A. J. Lichtenberg, and M. A. Lieberman, Physica
D 71, 132(1994.

[19] E. Fermi, J. Pasta, and S. Ulam, $h Ulam: Sets, Numbers,
and Universes edited by W. A. Bergeret al. (MIT Press,
Cambridge, MA, 1974 p. 490.

[20] F. M. Izrailev and B. V. Chirikov, Dokl. Akad. Nauk SSSR
166, 57 (1966 [Sov. Phys. Dokl11, 30 (1966].

[21] P. Bocchieri, A. Scotti, B. Bearzi, and A. Loinger, Phys. Rev.
2, 2013(1970.

[22] L. Boltzmann, Wiedemann Anrk7, 773(1896.

[23] J. H. Jeans, Philos. Ma@, 279(1903; 10, 91 (1905.

[24] G. Benettin, L. Galgani, and A. Giorgilli, Phys. Lett. 26, 23
(1987).

Promotion of Science, Tokyo, 19¥6vol. 2, p. 1245.

[28] M. von Smolukhovsky, Ann. PhysLeipzig) 21, 756 (1906.
[29] L. Boltzmann, NaturéLondon 51, 413 (1895.
[30] For N=108, all behaviors o¥, are classified into three types

of motion, provided that the initial configuration is random.
Figures 4a)—4(c) show typical behaviors o¥;, correspond-

ing, respectively, to the cases of higher, intermediate, and
lower T. This classification was found by calculating a series
of V, for the 30 trajectories. For the smaller systeniNaf 32,

the classification becomes intermediate. For the larger systems
of N=256 and 864, we were unable to calcul&ewith our
limited computer power. Instead, we calculaleds a function

of time, which characterizes the kinetic energy defined in Eq.
(4). The quantityT continues to increase when the asymmetric
motion occurs. The judgment of whether or not the asymmetric
motion occurs is made by examining the time dependence of
T. From this, we can conclude the existence of type 1 motion
showing no increase ifi. Next, we can confirm that the asym-
metric motions are classified into two typ@orresponding to
types 2 and Bas follows. For higheT, the dynamics show no
asymmetric motion. By decreasing the initial kinetic enefgy

the dynamics show asymmetric motion. THergraduallyin-
creases as time elapses, suggesting that the phase point wan-
ders from basin to basin. This is similar to the type 2 motion
observed forN=108. By further decreasing the initidl, T
intermittently increases as time elapses, corresponding to the
type 3 observed foN=108. The frequency with which the
basin depths are computed affects the details of the pattern
shown in Figs. 4a)—4(c). The wandering property, asymmetric
motion, or intermittency observed for each type of motion,
concluded from the patterns &f, do not depend on the de-
tails of the patterns. For example, the asymmetric motion for
type 2 ceases after time goes beyaepd, T). The asymmetric
motion and wandering property hold if man’s are calcu-
lated for the timet [<7(N,T)].

[31] J. Lebowitz, Physica A194, 1 (1993; Phys. Today9, 32

(1993.

[32] V. I. Olesedec, Trans. Moscow Mathy. Sd®, 197 (1978.
[33] E. Teramoto, inMarkovian Process and Dynamical Process

(Maki Shoten, Tokyo, 1961p. 45,

[25] G. Benettin, G. LoVecchio, and A. Tenenbaum, Phys. Rev. A[34] P. Klossowski,Nietzsche et le Cercle VicieuMercure de

22,1709(1980.
[26] G. Benettin and A. Tenenbaum, Phys. Rev2&\ 3020(1983.

France, Paris, 1969

[35] K. Ikeda and K. Matsumoto, Physica Z9, 223 (1987.

[27] Y. Hagihara, inCelestial MechanicgJapan Society for the [36] I. Ohmine and H. Tanaka, Chem. R@B, 2545(1993.



